
Logical relations for call-by-push-value models,
via internal fibrations in a 2-category

Abstract—We give a denotational account of logical relations1

for call-by-push-value (CBPV) in the fibrational style of Hermida,2

Jacobs, Katsumata and others. Fibrations—which axiomatise the3

usual notion of sets-with-relations—provide a clean framework4

for constructing new, logical relations-style, models. Such models5

can then be used to study properties such as effect simulation.6

Extending this picture to CBPV is challenging: the models7

incorporate both adjunctions and enrichment, making the appro-8

priate notion of fibration unclear. We handle this using 2-category9

theory: we identify an appropriate 2-category, and define CBPV10

fibrations to be fibrations internal to this 2-category which strictly11

preserve the CBPV semantics.12

Next, we develop the theory so it parallels the classical setting.13

We give versions of the codomain and subobject fibrations, and14

show that new models can be constructed from old ones by15

pullback. The resulting framework enables the construction of16

new, logical relations-style, models for CBPV.17

Finally, we demonstrate the utility of our approach with par-18

ticular examples. These include a generalisation of Katsumata’s19

⊤⊤-lifting to CBPV models, an effect simulation result, and a20

novel relative full completeness result for CBPV.21

I. INTRODUCTION22

Logical relations are a fundamental tool for proving23

metatheoretic properties of logics and programming lan-24

guages: for a flavour of their longevity and range of appli-25

cation, see [1], [2], [3], [4]. In their simplest form, logical26

relations are families of relations over closed terms, defined27

by induction on the types. Denotationally, this data typically28

organises itself into a relations model (e.g. [53], [2], [61]).29

A priori there are many different forms of relations models.30

However, Jacobs [6] and Hermida [5] have shown that they can31

studied in general using Grothendieck fibrations, a category-32

theoretic abstraction which axiomatises the notion of rela-33

tion. Because of their rich mathematical theory, Grothendieck34

fibrations provide a robust framework for constructing new35

models from old ones, as well as capturing many existing36

constructions.37

In recent years there has been extensive work extending38

fibrational techniques to semantic accounts of logical relations39

in the presence of effects, in particular monadic models of call-40

by-value (CBV) languages (e.g. [41], [40], [8], [42], [7]). This41

theory forms a powerful and flexible framework for building42

semantic models, which has been used for attacking problems43

such as definability [9], [10] and effect simulation [16].44

However, a corresponding framework is currently lacking for45

models of call-by-push-value (CBPV) in their full generality.46

While particular cases have been studied (e.g. [50], [54]),47

we lack a denotational account of logical relations of CBPV48

that matches the generality and flexibility of existing work on 49

CBV models. 50

This paper aims to resolve the gap. We introduce a 51

mathematically-justified notion of fibrations for CBPV models 52

(Section IV), and develop their basic theory. Then we prove a 53

lifting theorem (Section V) which yields a modular framework 54

for building new CBPV models from existing ones, as we 55

show through a range of examples (Section V-A). In partic- 56

ular, we see that our definition specialises to the expected 57

syntactic relation on terms. We then put this theory to work 58

by showing how to prove effect simulation results analogously 59

to Katsumata’s argument [16] for CBV models (Section VI). 60

As a consequence of our foundational perspective, moreover, 61

we are able to prove a relative full completeness result 62

(Section VII) establishing semantically that CBPV function 63

types conservatively extend the first-order fragment. 64

Fibrations for semantic models. To explain what universal 65

property we are looking for, and the obstacles to getting it, let 66

us first consider the situations for the pure and CBV cases. 67

In semantic terms, Grothendieck fibrations axiomatise the 68

following situation. Let Pred be the category in which objects 69

are sets X equipped with a subset (predicate) R ⊆ X , and 70

morphisms (X,R) → (X ′, R′) are functions f : X → X ′
71

preserving the predicates: if x ∈ R then f(x) ∈ R′. There is 72

a forgetful functor p : Pred → Set with the property that, 73

if f : X → p(Y, S) in Set, then there is a canonical way 74

to lift f to a morphism in Pred, using the inverse image: 75

f : (X, f−1[S]) → (Y, S). Thus, a fibration p : E → B 76

may be thought of saying objects of E are “relations” on 77

B-objects. Furthermore, Pred is cartesian closed and the 78

forgetful functor p : Pred → Set preserves this structure 79

on the nose. Thinking of these categories as models of the 80

simply-typed λ-calculus (STLC), therefore, we see that (1) 81

a λ-term is interpreted as a morphism preserving a certain 82

predicate; (2) the functor p preserves the interpretation of λ- 83

terms. Thus, the model in Pred refines that in Set with extra 84

information encoded by the relations. 85

A key feature of this approach is that it is easy to construct 86

new fibrational models from old ones. Consider, for instance, 87

the pullback square on the left below, where ∆(X) := X×X: 88

BinPred Pred

Set Set

q
⌟

p

∆

P E

A B

q
⌟

p

F

(1)

The objects in BinPred are sets X with a binary relation 89



R ⊆ X ×X , and the maps are functions which preserve the90

relation. BinPred is still cartesian closed and the forgetful91

functor q is still a fibration so, from our initial fibration, we92

have constructed a new model.93

This holds in general. Following Katsumata [16], let us call94

a fibration which strictly preserves cartesian closed structure95

a STLC fibration. For any STLC fibration p as on the right96

above, the pullback q along a product-preserving functor F97

will also be an STLC fibration. Thus, starting from STLC98

fibrations we have a robust and flexible way to construct a99

wide range of STLC models.100

Lifting CBV models. The framework just outlined for con-101

structing new models extends to the effectful setting. Let us102

call a (Moggi-style) CBV model a cartesian closed category103

C equipped with a strong monad (T, µ, η, t) (see e.g. [14],104

[15]). An effectful program Γ ⊢ M : A is then interpreted as105

a morphism JΓK → T JAK in C [12], [13]. We want a “CBV106

fibration” to capture situations when one CBV model is a107

refinement of another, just as we had for STLC fibrations.108

Thus, the appropriate notion should be a fibration which109

strictly preserves the interpretation of terms. If (Ĉ, T̂ ) and110

(C, T ) are CBV models, we say p : Ĉ→ C is a CBV fibration111

if is an STLC fibration which also preserves all the monadic112

structure, so that pT̂ = Tp, pµT̂
C = µT

pC , pηT̂C = ηTp C,113

pηT̂C = ηTpC and ptT̂C = tTpC for every C ∈ C.114

Just as every STLC fibration led to new STLC models, so115

every CBV fibration leads to new CBV models, as follows.116

Recall that if (S, tS) is a strong monad on B and (T, tT ) is117

a strong monad on C then a strong monad morphism consists118

of a functor F : B → C and a natural transformation γ :119

FS ⇒ TF which is compatible with the unit, multiplication,120

and strengths (see e.g. [17], [16]). Given a CBV fibration p121

and a strong monad morphism (F, γ) in which F is cartesian,122

there is a universal choice of model (B̂, Ŝ) lying over (B, S):123

(B̂, Ŝ) (Ĉ, T̂ )

(B, S) (C, T )

p

(F,γ)

(2)

The monad Ŝ is defined at an object (B ∈ B, Ĉ ∈ Ĉ) by124

applying the universal property of the fibration p to the arrow125

γB : FS(B)→ TF (B) = p(T̂ Ĉ)

We can also use the language of fibrations to express this126

universal property, as follows.127

Definition I.1. The category CBV× has objects CBV models128

(C, T ) and morphisms strong monad morphisms (F, γ) in129

which F is a cartesian functor. Note that F need not preserve130

exponentials. The category CBVl of CBV model liftings has131

objects CBV fibrations p : (Ĉ, T̂ ) → (C, T ). A morphism132

p → p′ consists of CBV×-maps (F̂ , γ̂) : (Ĉ, T̂ ) → (Ĉ′, T̂ ′)133

and (F, γ) : (C, T ) → (C′, T ′) which commute with the134

fibrations, so that p′ ◦ F̂ = F ◦ p, and similarly on the natural135

transformations γ and γ̂.136

We then obtain the following lifting result (cf. [8], [10]), 137

which is the CBV-model version of the pullback in (1). 138

Proposition I.2 (Generalised ⊤⊤-lifting). The functor 139

CBVl → CBV× sending a CBV fibration p to its codomain 140

is a fibration. 141

From CBV to CBPV. We want a version of the theory just 142

sketched, but for CBPV. Thus, we require (1) a notion of 143

CBPV fibration, and (2) a lifting theorem as in Proposition I.2. 144

However, a CBPV model consists of a cartesian category C 145

and a locally C-indexed category C (see Definition III.1); 146

abstractly, a locally C-indexed category is a category enriched 147

in the presheaf category PC. 148

It follows that we cannot ask CBPV fibrations to be functors 149

preserving the semantics: this is not even well-typed. More- 150

over, just as in (2) we allowed the base categories to vary, 151

morphisms of CBPV models may also change the enriching 152

category C. Thus, we cannot even define the right notion of fi- 153

bration by taking the PC-enriched definition (and if we could, 154

the theory of enriched fibrations [18], [19], [20] is motivated 155

by quite different concerns—namely the correspondence with 156

the Grothendieck construction—so it is not clear this would 157

do the right thing). Nor is it straightforward to simply write 158

a definition by hand: if one looks at the concrete definition 159

of morphisms of CBPV models, there appear to be choices in 160

how to define the universal property of a “CBPV fibration” 161

(see Remark IV.7). To obtain a principled definition of CBPV 162

fibration and its corresponding theory, therefore, we must look 163

elsewhere. This is the technical core of the paper. 164

Outline of the paper. We use 2-category theory to resolve 165

the difficulties in defining CBPV fibrations. We introduce a 166

2-category LInd of locally indexed categories (Section IV-A) 167

and identify the fibrations internal to this 2-category (Sec- 168

tion IV-B). Just as an STLC fibration is a fibration in Cat 169

which preserves STLC model structure, so we define a CBPV 170

fibration to be a fibration in LInd which preserves CBPV 171

model structure (Section IV-D). An immediate consequence of 172

this approach is that the rich theory of fibrations still applies to 173

our definition. We highlight this by developing locally indexed 174

versions of important constructs in the theory of STLC and 175

CBV fibrations, such as the codomain and subobject fibrations. 176

Next, we prove a lifting theorem for CBPV fibrations 177

(Theorem V.2), thereby regaining the situation sketched in 178

Proposition I.2. As for CBV fibrations and STLC fibrations, 179

this is a useful source of examples: we sketch several in 180

Section V-A, then show how our theory can be used to adapt 181

Katsumata’s effect simulation framework [16] from CBV to 182

CBPV (Section VI). 183

The foundational nature of our theory means that we have 184

many of the ingredients needed to prove a semantic relative 185

full completeness result in the style of Lafont [56]. We do this 186

in Section VII, thereby obtaining via our semantic technology 187

a proof that CBPV function types are conservative over the 188

first-order fragment. Finally, in Section VIII we outline the 189

sense in which our lifting theorem is part of a general 190



mathematical phenomenon, which applies both to CBV models191

and to CBPV models.192

Notation. We assume familiarity with Grothendieck fibra-193

tions: for an introduction, see e.g. [6]. We write C→ for the194

arrow category, in which objects are maps in C and morphisms195

are commuting squares, and SubC for the full subcategory196

obtained by restricting the objects to monos. In both cases we197

write cod for the codomain functor into C. If p : E→ B is a198

fibration, we denote the products and exponentials in E by ∗199

and ⊃. We assume throughout that all fibrations are split.200

II. 2-CATEGORY THEORY201

We assume the basics of 2-category theory, in particular202

the definition of 2-categories, 2-functors, and transformations.203

For a textbook length introduction, see e.g. [21], [22]. We also204

provide a brief summary in Appendix A.205

We write C,D, . . . for categories and C,D, . . . for206

2-categories. The four 2-categories of 2-functors C → D, strict207

/ pseudo / lax / oplax natural transformations, and modifica-208

tions, are denoted [C,D]st, [C,D]ps, [C,D]lx and [C,D]oplx, re-209

spectively. Lax natural transformations are directed as follows:210

FC FC ′

GC GC ′

Ff

σC

σf
σC′

Gf

We use the following notation for common 2-categories.211

Recall that a cartesian category is distributive if it has finite212

coproducts and the canonical morphism [X × idB , X × idC ] :213

(X ×B) + (X ×C)→ X × (B+C) is invertible, and that a214

bicartesian closed category (or biCCC) is a cartesian closed215

category with finite coproducts.216

• Cat is the 2-category of categories.217

• CartCat and DistCat are the 2-categories of cartesian218

categories and distributive categories, respectively. In219

each case the 1-cells are functors preserving the structure220

up to isomorphism, and the 2-cells are all natural trans-221

formations. We write CartCatst and DistCatst for222

the sub-2-categories with the same objects and functors223

strictly preserving the structure.224

A. Adjunctions and their morphisms225

CBPV models are defined using adjunctions internal to a226

2-category. We recall the definition.227

Definition II.1. An adjunction in a 2-category C consists of228

x1-cells f : A ⇆ B : u together with 2-cells η : idA ⇒ u ◦ f229

and ε : f ◦ u⇒ idB satisfying the usual triangle laws.230

Example II.2. An adjunction in CartCat is an adjunction231

between cartesian categories such that both the left and right232

adjoints are cartesian.233

We shall also need morphisms between adjunctions. For this234

we shall see adjunctions as certain 2-functors and then define235

maps of adjunctions and their 2-cells as the corresponding236

transformations and modifications (cf. [23], [24]).237

Let Adj be the 2-category freely generated by the data of an 238

adjunction, namely two objects • and ∗, 1-cells f : •⇆ ∗ : u, 239

and 2-cells η : id• ⇒ u ◦ f and ε : f ◦ u ⇒ id∗ satisfying 240

the triangle laws. A 2-functor Adj → C is then equivalently 241

an adjunction in C. It follows immediately that any 2-functor 242

preserves adjunctions. 243

Definition II.3. We write Adj(C)w for the 2-functor category 244

[Adj, C]w, where w ∈ {st,ps, lx, oplx}. We call the 1-cells 245

strict / pseudo / lax / oplax adjunction maps and the 2-cells 246

adjunction 2-cells. 247

A lax adjunction map (ℓ : X ⇆ Y : r)→ (f : A ⇆ B : u) 248

consists of 1-cells m : X → A and n : Y → B together with 249

2-cells as shown below 250

X Y Y X

A B B A

ℓ

m α n

r

n
β

m

f u

which are moreover compatible with the units and counits, in 251

the sense that the following two diagrams commute: 252

nℓr n

fmr fun

nεℓ,n

αr

fβ

εf,un

ℓ mrℓ

ufℓ unℓ

ℓηr,ℓ

ηu,f ℓ βℓ

nα

(3)

This is a strict adjunction map when α and β are both 253

the identity. One then recovers the notion of morphism of 254

adjunctions commonly used for showing the terminality of the 255

Eilenberg–Moore category (as in e.g. [25, §IV.7]). 256

B. Fibrations 257

We shall make extensive use of fibrations internal to a 258

2-category. These have been studied extensively (e.g. [26], 259

[27]); for a readable introduction to the theory, see [28]. 260

Definition II.4. Let C be a 2-category. A fibration in C is a 261

1-cell p : E → B such that 262

1) For every X ∈ C, the functor p ◦ (−) : C(X,E) → 263

C(X,B) is a fibration in Cat, and 264

2) For every h : Y → X the following defines a morphism 265

of fibrations (see e.g. [29, Definition 2.6]): 266

C(X,E) C(Y,E)

C(X,B) C(Y,B)

(−)◦h

p◦(−) p◦(−)

(−)◦h

An opfibration is (somewhat unfortunately) defined to be a 267

fibration in Cco. 268

Fibrations in a 2-category inherit many of the properties 269

of fibrations in Cat. For example, it is immediate that the 270

identity is always a fibration and that fibrations are closed 271

under composition. An (op)fibration in Cat is exactly an 272

(op)fibration in the usual sense. 273



The next result shows this is a general phenomenon about274

categories with algebraic structure. Just as algebras for monads275

describe algebraic structure on objects of a category, so276

algebras for 2-monads describe algebraic structure on cate-277

gories. For an introduction to this approach, see [32]. For the278

definition of algebras and their morphisms, see e.g. [33], [34].279

Proposition II.5. 1) If T is a 2-monad on a 2-category C,280

and (f, f) is a pseudomorphism or strict morphism of281

algebras T -pseudoalgebras such that f is a fibration in282

C, then (f, f) is a fibration in T -Alg.283

2) Right adjoint 2-functors preserve fibrations.284

Hence, (f, f) is a fibration in T -Alg if and only if its285

underlying map is a fibration.286

This theorem covers CartCat,DistCat and similar cases.287

To characterise fibrations in our particular example, we288

will need some simple 2-categorical limits. For an extensive289

discussion of both limits and fibrations, see [30].290

Definition II.6. Let (A
f−→ C

g←− B) be a cospan in a 2-291

category C. The comma object f ↓ g is the universal object292

with a 2-cell as shown below: see e.g. [30, §2.1] for the precise293

universal property.294

f ↓ g B

A C

q

p g

f

λ

The pullback of g along f is defined analogously, except the295

square must be filled by an identity: see [30, §2.1].296

It follows from the corresponding fact in Cat that fibrations297

in a 2-category are closed under pullbacks.298

Example II.7. The comma object (F ↓ G) in CartCat is the299

usual comma category (e.g. [25, §II.6]) with cartesian structure300

(FA
j−→ GB)× (FA′ j′−→ GB′) defined to be301

F (A×A′)
∼=−→ FA× FA′ j×j′−−−→ GB ×GB′ ∼=−→ G(B ⊗B′)

Similar remarks hold for DistCat.302

Example II.8. In any 2-category with comma objects the303

arrow object C→ on C is defined to be the comma object304

(idC ↓ idC). In Cat this is exactly the arrow category C→.305

The definition of the comma object also gives a map we denote306

cod : C→ → C; this is always an opfibration.307

Example II.9. DistCat does not have all pullbacks. Indeed,308

recall that the pullback of F : A → C and G : B → C in309

Cat has objects pairs (A ∈ A, B ∈ B) such that FA = GB.310

But if F and G only preserve products up to isomorphism,311

(A1 × A2, B1 × B2) may not be an object of the pullback312

even though both (Ai, Bi) are. However, DistCatst has313

all pullbacks. Moreover, if p is a bifibration which strictly314

preserves products and coproducts then the pullback along315

any map exists in DistCat (cf. [16, Proposition 6]). Similar316

remarks apply to CartCat.317

III. DENOTATIONAL MODELS OF CBPV 318

We refer to Levy’s extensive works [35], [36], [37] for the 319

syntax and semantics of CBPV. There are several equivalent 320

ways to phrase the data of a denotational model (see [38, 321

Chapter 11] and [38, §15.1]), so we make our choice explicit. 322

A. Locally indexed categories 323

The basic data of a CBPV model is a locally indexed 324

adjunction. This is an adjunction in the 2-category P(C)-Cat 325

of categories enriched in a presheaf category PC. We recall 326

from [35], [36] some of the basic definitions. Throughout this 327

section, fix (C,×, 1) to be a cartesian category. 328

Definition III.1. A locally C-indexed category C consists of: 329

1) A collection |C| of objects A,B, . . . . 330

2) For each c ∈ C a category Cc with objects |C|. Thus for 331

each A,B ∈ C we have a set Cc(A,B) of morphisms 332

over c, denoted f : A −→
c

B; 333

3) For each ρ : d → c in C an identity-on-objects functor 334

(−) ◁ ρ : Cc → Cd, subject to the following axioms for 335

ρ′ : e→ d, f : A −→
c

B and g : B −→
c

C: 336

f ◁ idc = f f ◁(ρ ◦ ρ′) = (f ◁ ρ) ◁ ρ′

(g ◦ f) ◁ ρ = (g ◁ ρ) ◦ (f ◁ ρ)

Example III.2. The locally C-indexed category self C has 337

objects as in C and (self C)C(A,B) := C(C ×A,B). 338

Definition III.3. A locally C-indexed functor F : C → D 339

consists of a mapping |F | : |C| → |D| on objects and, for 340

every c ∈ C and A,B ∈ C, a mapping Fc : Cc(A,B) → 341

Dc(FA,FB) such that Fc defines a functor Cc → Dc and 342

is compatible with renaming: Fc(f ◁ ρ) = Fc(f) ◁ ρ for any 343

ρ : d → c in C. We drop the subscripts where they are clear 344

from context. 345

Definition III.4. A locally C-indexed transformation α : F ⇒ 346

G : C → D consists of an arrow αC : FC −→
1

GC for each 347

C ∈ C, natural in the sense that for any f : B −→
c

C in C the 348

following diagram commutes in Dc: 349

FB FC

GB GC

Ff

αB ◁ !c αC ◁ !c

Gf

c (4)

Notation III.5. We henceforth adopt the notation used in (4): 350

when writing a diagram in a locally indexed category, we 351

indicate the index by writing it in the centre of the shape. 352

We write C-LInd for the 2-category of locally C-indexed 353

categories, locally C-indexed functors, and transformations 354

categories. As remarked above, this is exactly P(C)-Cat. 355

Definition III.6. A locally C-indexed adjunction is an ad- 356

junction in the 2-category C-LInd. This is a pair of locally 357

C-indexed functors F : C ⇆ D : U with locally C-indexed 358

transformations η : idC ⇒ UF and ε : idD ⇒ FU satisfying 359

the usual triangle equalities as composites in D1. 360



B. CBPV models361

In order to model CBPV a locally indexed category needs362

to model the product and function types.363

Definition III.7 (e.g. [36, §5]). Let C be a bicartesian category364

and C be a locally C-indexed category.365

1) C has (countable) products if for every countable family366

of objects (Bi | i ∈ n) there exists an object
∏

i Bi ∈ C367

and arrows πi :
∏

i Bi −→
1

Bi inducing an isomorphism368

Cc(A,
∏

i Bi) ∼=
∏

i Cc(A,Bi) natural in c and A.369

2) C has (C-indexed) powers if for every c ∈ C and B ∈ C370

there exists an object c ⇒ B ∈ C and an arrow eval :371

(c ⇒ B)
c−→ B inducing an isomorphism Cb×c(A,B) ∼=372

Cb(A, c⇒ B) natural in c and A.373

3) The coproducts in C are distributive in C if for all a, bi ∈374

C and A,B ∈ C the following map is invertible:375

Ca×∑
i bi

(A,B)→
∏

i Ca×bi(A,B)

f 7→
(
f ◁ (ida × inji)

)
i

A CBPV model is now defined by taking the appropriate376

universally-defined structure for each CBPV construct.377

Definition III.8 (e.g. [36, §5]). A CBPV model consists of378

a bicartesian category C and a locally C-indexed adjunction379

F : self C ⇆ C : U such that C has products and powers, and380

the coproducts in C are distributive in C.381

For the sake of exposition, in this paper we will focus on382

relatively simple classes of CBPV models. We refer to [36,383

p. 85] and [35] for the details of these and many other models.384

Example III.9 ([36, §7]). As expected, the syntax forms a385

model. For any signature S of value base types, computation386

base types, and operations one may freely generate a theory387

and its classifying syntactic model SynS .388

Example III.10 (Algebra models). Let C be a biCCC and389

(T, t) a strong monad (see e.g. [14], [15]) on C. The category390

CT of T -algebras becomes a locally C-indexed category391

EM(T ) by taking maps (A, a) −→
c

(B, b) to be maps c×A→392

B that are right linear [39]. The free–forgetful adjunction then393

becomes a CBPV model FT : self C ⇆ EM(T ) : UT .394

Example III.11 (Storage). Let (C,×, 1,⇒, 0,+) be a biCCC395

and S ∈ C be a fixed object of “states”. The adjunction (−)×396

S ⊣ S ⇒ (−) defines a CBPV model self C ⇆ self C.397

IV. CBPV FIBRATIONS398

In this section we introduce CBPV fibrations. Our approach399

closely follows the pattern for monadic models of CBV in the400

style of Moggi [13], [12] pioneered by Katsumata [8], [9],401

[16] (see also [40], [41], [42], [10]). We begin by defining a402

2-category of locally indexed categories (Section IV-A), and403

identify the locally indexed fibrations as fibrations internal to404

this 2-category (Section IV-B). In the locally indexed setting,405

these play the same role that traditional fibrations do in the406

non-indexed setting. We shall then define a CBPV fibration407

to be a locally indexed fibration that strictly preserves the408

structure of a CBPV model (Section IV-D). Along the way 409

we shall also see that the general theory leads directly to a 410

variety of examples, in the form of locally indexed versions 411

of the codomain and subobject fibrations. 412

A. The 2-category LInd 413

We begin by defining the 2-category of locally indexed cat- 414

egories. The objects are pairs (C, C) consisting of a cartesian 415

category C and a locally C-indexed category C. 416

To define the 1-cells we need to allow the indexing cate- 417

gories to vary. To this end, observe that any cartesian functor 418

f : V → W induces a cartesian functor f∗ : P(W) → P(V) 419

by precomposition, and hence—by change of base (e.g. [43, 420

§6.4])—a 2-functor W-LInd → V-LInd which we also 421

denote by f∗. Explicitly, if C ∈ W-LInd then f∗C has the 422

same objects and hom-presheaves defined by (f∗C)V := CfV . 423

Composition and identities are as in C, and reindexing along 424

ρ in f∗C is given by reindexing along f(ρ) in C. 425

We may now define a locally indexed functor (f, F ) : 426

(C, C) → (D,D) to be a cartesian functor f together with 427

a locally C-indexed functor F : C → f∗D. This smoothly 428

handles reindexing: a map k ∈ Cc(C,C ′) is sent to a map 429

Fk ∈ (f∗D)c(FC,FC ′) = Dfc(FC,FC ′). 430

The 2-cells are defined similarly. Indeed, both change-of- 431

base and the passage from functors f between categories to 432

functors f∗ between presheaf categories are 2-functorial [44], 433

[45]. Thus, every natural transformation γ : f ⇒ g defines 434

a strict natural transformation γ∗ : g∗ ⇒ f∗ : W-LInd → 435

V-LInd. The component (γ∗)C at C ∈ W-LInd is the 436

identity-on-objects V-LInd-functor which reindexes along γ: 437

(γ∗)C(V ) := (g∗C)V = CgV
(−) ◁ γV−−−−−→= CfV = (f∗C)V

We define a locally indexed 2-cell (f, F )⇒ (g,G) : (C, C)→ 438

(D,D) to be a natural transformation γ : f ⇒ g together 439

with a locally C-indexed transformation γ : F ⇒ (α∗)D ◦G. 440

Concretely, γ is a family
(
γC : FC −→

1
GC

)
C∈C such that for 441

any k : C −→
c

C ′ in C the following diagram commutes: 442

FC FC ′

GC GC ′

F (k)

γC ◁ !c γC′ ◁ !c

G(k) ◁ γc

f(c) (5)

Definition IV.1. We write LInd for the 2-category of locally 443

indexed categories, locally indexed functors, and locally in- 444

dexed transformations. 445

Remark IV.2. Abstractly, LInd is the 2-Grothendieck con- 446

struction [46], [47] of the 2-functor K : DistCatcoop → 447

2-Cat defined on objects by K(V) := V-LInd and on 1- 448

cells and 2-cells by change of base as in Section IV-A. 449

B. Locally indexed fibrations 450

We are now in a position to identify locally indexed fibra- 451

tions as fibrations internal to LInd. We do this using [30, 452

Theorem 2.7]. We therefore need to construct comma objects. 453



Construction IV.3. Let (A,A) (f,F )−−−→ (C, C) (g,G)←−−− (B,B) be454

a cospan in LInd. The comma object is defined as follows.455

The indexing category is the comma object (f ↓ g) in456

CartCat (Example II.7). Objects in (F ↓ G) are triples457 (
A ∈ A, B ∈ B, k : FA −→

1
GB

)
. A map (A,B, k) −→

j
458

(A′, B′, k′) over j : fa → gb consists of maps u : A −→
a

A′
459

and v : B −→
b

B′ such that the following diagram commutes:460

FA FA′

GB GB′

F (u)

k ◁ !fa k′ ◁ !fa

G(v) ◁ j

f(a)

Composition, identities, and reindexing are componentwise.461

As an immediate corollary we also obtain pullbacks so long462

as they exist in CartCat (Example II.9).463

Construction IV.4. Let (A,A) (f,F )−−−→ (C, C) (g,G)←−−− (B,B)464

be a cospan in LInd such that the pullback A×C B exists in465

CartCat. Then the pullback of this cospan exists in LInd,466

and is defined by restricting F ↓ G to the objects (A,B) such467

that F (A) = G(B).468

Similarly, one may construct the product (C, C) × (D,D)469

in LInd by first taking the product C× D in CartCat and470

then defining C × D to have objects pairs (C ∈ C, D ∈ D)471

and hom-presheaves (C × D)(c,d) := Cc × Dd. In fact, each472

of these constructions may be seen as following directly from473

Remark IV.2 and the fact that the Grothendieck 2-category for474

a 2-functor K : Ccoop → 2-Cat has those limits which exist475

in C and every 2-category K(A), and are preserved by every476

F (f) (cf. the construction of limits in the total category of a477

fibration [29, §4]).478

Now, working through the condition in [30, Theorem 2.7]479

yields the following. To simplify notation we elide the iso480

p(1) ∼= 1 given by the fact p is cartesian.481

Proposition IV.5. A locally indexed functor (p, P ) : (E, E)→482

(B,B) is an internal fibration if and only if p is a fibration483

and P satisfies the following lifting property. For every k :484

A −→
1

PY in B there exists an object Â ∈ B and an arrow485

k̂ : Â −→
1

Y in E such that, for any triangle downstairs as486

shown in the next diagram, there exists a unique lift û making487

the triangle upstairs commute:488

X E

Â Y

P (X)

A P (Y ) p∗B

û

v

P
k̂ ◁ !e

u

P (v)

k ◁ !pe

e

p(e)

Definition IV.6. A locally indexed fibration / opfibration / 489

bifibration is a fibration / opfibration / bifibration in LInd. 490

Remark IV.7. This definition is not immediately obvious. For 491

example, when writing a definition of locally indexed fibration 492

by hand one might be tempted to set the universal property so 493

that maps over any index have a cartesian lift. Nonetheless, 494

our definition fits into the schema of locally indexed universal 495

properties: compare it to the way the universal arrow defining 496

a product—namely, the projections—lies over 1. 497

Because our definition arises from the mathematical the- 498

ory we immediately know it is robust, and satisfies useful 499

properties such as closure under pullback. Moreover, we can 500

use it to define locally indexed versions of the codomain and 501

subobject fibrations. Thus, we also get locally indexed versions 502

of the core building blocks for constructing new models. The 503

construction of the codomain opfibration follows directly from 504

Construction IV.3 and Example II.8. 505

Construction IV.8. The locally indexed arrow category of 506

a locally indexed category (C, C) is the C→-indexed category 507

with objects arrows A −→
1

B in C1. There is a canonical locally 508

indexed codomain functor (cod, cod) : (C→, C→)→ (C, C). 509

This leads naturally to the subobject fibration. 510

Definition IV.9. We write Sub(C) for the Sub(C)-indexed 511

category obtained by restricting the objects of C→ to arrows 512

A −→
1

B that are monic in C1. Since Sub(C) is closed under 513

products, reindexing is as in C→. 514

In Cat, the codomain functor is a fibration if and only if 515

the base category C has pullbacks; then cod : SubC → C is 516

a also fibration. A corresponding fact is true here. 517

Definition IV.10. A locally indexed category (C, C) has 518

locally indexed pullbacks if C1 has pullbacks, which are 519

preserved by every (−) ◁ !c. 520

Lemma IV.11. Let (C, C) be a locally indexed category. 521

The locally indexed codomain functor is a locally indexed 522

bifibration if and only if C has with locally indexed pullbacks. 523

In this situation, the fibration structure restricts to make 524

(SubC,Sub C)→ (C, C) a fibration as well. 525

Example IV.12. Suppose C is finitely complete. Then self C 526

has locally indexed pullbacks. Moreover, for any strong monad 527

(T, t) on C the induced locally C-indexed category EM(T ) 528

of T -algebras also has locally indexed pullbacks. 529

C. The 2-category of CBPV models 530

Now we have locally indexed fibrations in hand, all that 531

remains is to define a 2-category of CBPV models. We will 532

then be able to say a CBPV fibration is a “map of CBPV 533

models that preserve all the structure”. In this section we 534

isolate a 2-category of CBPV models and lax maps as a sub- 535

2-category of Adj(LInd)lx. In Section IV-D we will combine 536

this with Definition IV.6 to define CBPV fibrations. 537



Every CBPV model is an object in Adj(LInd) of a special538

kind, because we require the domain of the left adjoint to539

be of the form self C. In other words, this part of the data540

is wholly determined by a bicartesian category C. Corre-541

spondingly, we will isolate the maps of CBPV models as the542

maps in Adj(LInd)lx for which the action on this component543

is determined by bicartesian structure. For this we use the544

following lemma.545

Lemma IV.13. The self construction (Example III.2) extends546

to a 2-functor DistCat → LInd. Moreover, this preserves547

products, comma objects, pullbacks whenever they exist, and548

fibrations which strictly preserve products.549

The 1-cells in our 2-category CBPV×
lx of CBPV models550

are the ones we wish to pull back along in our lifting theorem.551

Thus, we only ask for preservation of products: this matches552

the situation for CBV models, where one can construct new553

models by pulling back along cartesian—not just cartesian554

closed—functors (cf. [16, Proposition 6]).555

Definition IV.14. A locally C-indexed functor F : C → D556

preserves I-ary products if the canonical map ⟨Fπi⟩i∈I :557

F (
∏

iCi) −→
1

∏
i F (Ci) is an isomorphism in D1. It preserves558

products strictly if all the structure is preserved on the nose:559

F (
∏

i Ci) =
∏

i FCi Fπi = πi F ⟨fi⟩ = ⟨Ffi⟩

The definition of strict preservation of powers is likewise.560

We now give the definition. The objects of CBPV×
lx561

are CBPV models (C, C, F, U). A 1-cell (C, C, F C , UC) →562

(D,D, FD, UD) consists of563

• A bicartesian functor h : C→ D,564

• A locally C-indexed functor H : C → h∗D, and565

• Locally C-indexed transformations α and β,566

such that H preserves products and
(
self f,H, (id,α), (id,β)

)
567

is a 1-cell in Adj(LInd) as shown:568

self C C self C

self D D self D

(idC,F
C)

self h

(idC,U
C)

(h,H) self h

(idD,F
D) (idD,U

D)

(id,α) (id,β)
(6)

Thus, for each c ∈ C and C ∈ C we have arrows569

αc : (HF C)c −→
1

(FDh)c βC : (hUC)C −→
1

(UDH)C

natural in the sense of (5) and satisfying the compatibility570

axioms (3) as composites over 1.571

Finally, a 2-cell (h,H, α, β)⇒ (h′, H ′, α′, β′) in CBPV×
lx572

consists of a natural transformation γ : h ⇒ h′ and a locally573

B-indexed transformation γ : H ⇒ H ′ such that (self γ, γ) is574

a 2-cell in Adj(LInd)lx.575

D. Defining CBPV fibrations576

We can finally define CBPV fibrations as strictly structure-577

preserving locally indexed fibrations. Note that we require p578

to be a bifibration so that pullbacks along p exist in DistCat.579

Definition IV.15. A CBPV×
lx 1-cell (h,H, α, β) is strict if 580

1) h strictly preserves bicartesian structure, 581

2) H strictly preserves products and powers, and 582

3) (h,H) is a 1-cell in Adj(LInd)st, i.e. α and β are both 583

the identity. 584

A CBPV fibration (p, P ) is a strict CBPV×
lx 1-cell such that 585

(p, P ) is a locally indexed fibration and p is a bifibration. 586

Example IV.16 (Recall Example III.9). Levy’s proof of [36, 587

Proposition 7.3] essentially shows that for any CBPV model 588

(C, C, F, U) with an interpretation of the base types and 589

operations in a signature S there exists a strict CBPV×
lx 1- 590

cell SynS → (C, C, F, U) extending the interpretation of S. 591

Moreover, this is unique up to isomorphism. 592

By Lemma IV.13, a CBPV fibration is a transformation— 593

i.e. a 1-cell in [Adj,LInd]st—in which each component is a 594

locally indexed fibration. 595

Turning now to examples, one simple class of CBPV fibra- 596

tions comes via monad liftings. A particular instance of the 597

following result has been studied by Kammar [50, §9.2], who 598

constructs CBPV fibrations over Set using the free lifting. 599

Lemma IV.17. Let (Ĉ, T̂ ) and (C, T ) be Moggi-style CBV 600

models, and p : Ĉ → C a CBV fibration. Then p extends to 601

a fibration p̃ : ĈT̂ → CT , and this makes (p, p̃) : EM(T̂ ) → 602

EM(T ) a CBPV fibration. 603

A further set of examples corresponds to the classical fact 604

that, if C is a cartesian closed category with pullbacks, then 605

the codomain fibration over C is an STLC fibration. The key 606

technical result is the following. 607

Lemma IV.18. Let C be a cartesian category with pullbacks 608

and C be a locally C-indexed category with locally indexed 609

pullbacks, products, and powers. Then C→ and Sub C both 610

have products and powers, and the codomain locally indexed 611

functors strictly preserve this structure. 612

Now, the (−)→ operation is 2-functorial so from a CBPV 613

model (C, C, F, U) we obtain a lifted locally C→-indexed 614

adjunction (C→, C→, F→, U→). Combining the preceding 615

lemma with the observation that (self C)→ ∼= self (C→) in 616

C→-LInd, we obtain the following. 617

Proposition IV.19. Let (C, C, F, U) be a CBPV model such 618

that C has pullbacks and C has locally indexed pullbacks. 619

Then the codomain functor (cod, cod) : (C→, C→) → (C, C) 620

is a CBPV fibration. 621

The only obstacle to applying a similar argument to the 622

subobject fibration is that the left adjoint F may not preserve 623

monics, and therefore may not restrict to a locally indexed 624

functor self (SubC) → Sub C (right adjoints always preserve 625

monics). This can be rectified by taking an appropriate factori- 626

sation system, in the style of [41], [51], [40], [42]. For reasons 627

of space, however, we content ourselves to the case when F 628

preserves monics. This turns out to be remarkably common: 629

for example, it applies to the storage model of Example III.11), 630



the erratic choice and continuation models of [36, §5.7], and631

any algebra model over Set (see [52, p. 89-90]).632

Corollary IV.20. In the situation of Proposition IV.19, if633

moreover F1 preserves monics then the codomain functor634

(cod, cod) : (SubC,Sub C)→ (C, C) is a CBPV fibration.635

Example IV.21. Consider the model of Example III.11 in636

the case where C has pullbacks. Since both the left and637

right adjoints preserve monics, this lifts to a Storage model638

(−)∗S ⊣ S ⊃ (−) on SubC for any subobject S ↣ S. Then639

the subobject locally indexed fibration is a CBPV fibration;640

Corollary IV.20 is the case where S := (S
id−→ S).641

V. A LIFTING THEOREM FOR CBPV MODELS642

We now have all the technology to present our central tech-643

nical result: a lifting theorem for CBPV fibrations, paralleling644

those for STLC and CBV. The total space is defined as follows.645

Definition V.1. A CBPV lifting is a CBPV fibration (p, P ) :646

(Ĉ, Ĉ, F̂ , Û) → (C, C, F, U). A map of liftings (p, P ) →647

(p′, P ′) consists of CBPV×
lx-morphisms (m̂, N̂ , α̂, β̂) and648

(m,N,α, β) as shown below, such that the following diagram649

commutes in CBPV×
lx:650

(Ĉ, Ĉ, F̂ , Û) (Ĉ′, Ĉ′, F̂ ′, Û ′)

(C, C, F, U) (C′, C′, F ′, U ′)

(m̂,N̂,α̂,β̂)

(p,P ) (p′,P ′)

(m,N,α,β)

(7)

We write CBPVlift for the category of CBPV liftings and651

their maps, and cod : CBPVlift → CBPV×
lx for the652

codomain functor.653

Theorem V.2. cod : CBPVlift → CBPV×
lx is a fibration.654

We now recover the situation discussed in the introduc-655

tion, as we now explain. Let (p, P ) : (D̂, D̂, F D̂, U D̂) →656

(D,D, FD, UD) be a CBPV fibration. Also suppose that we657

have a CBPV×
lx 1-cell (h,H, α, β) as in (8). Then there exists658

a universal choice of CBPV model and a CBPV fibration659

(q,Q) as shown:660

(Ĉ, Ĉ, F Ĉ , U Ĉ) (D̂, D̂, F D̂, U D̂)

(C, C, F C , UC) (D,D, FD, UD)

(ĥ,Ĥ,α̂,β̂)

(q,Q) (p,P )

(h,H,α,β)

(8)

This is an instance of a general fact about lax transforma-661

tions: see Section VIII. We sketch the concrete construction.662

First, q and Q are defined as pullbacks in DistCat and LInd663

respectively; these exist because p is strict and a bifibration664

(Example II.9 and Construction IV.8).665

Ĉ D̂

C D

ĥ

q
⌟

p

h

(Ĉ, Ĉ) (D̂, D̂)

(C, C) (D,D)

(ĥ,Ĥ)

(q,Q)
⌟

(p,P )

(h,H)

(9)

An argument similar to that for cartesian closed structure 666

(e.g. [16, Proposition 6]) shows (Ĉ, Ĉ) has products and 667

powers. We define the adjunction (self Ĉ ⇆ Ĉ) and the 2-cells 668

α̂ and β̂ in (8) using the universal property of the fibrations. 669

Observe first that the following diagram commutes because 670

self is a 2-functor and (p, P ) is a strict adjunction morphism: 671

self Ĉ self D̂ (D̂, D̂)

self C self D (D,D)

self ĥ

self q

F D̂

self p (p,P )

self h FD

For any (c, d̂) ∈ self Ĉ we may therefore apply the universal 672

property of the fibration (p, P ) to αq(c,d̂) = αc: For this, fix 673

any object (C, D̂) ∈ Ĉ (recall Construction IV.8) and apply the 674

universal property of the fibration to the arrow αq(c,d̂) = αc: 675

α̂c(F
D̂ĥc) (F D̂ĥ)c D̂

(HF C)c (FDh)c = (PF D̂ĥ)c D

α̂c

1

(p,P )

αc

1

This definition extends to a locally indexed functor K : 676

self Ĉ → (D̂,D), so we may use the universal property of 677

the pullback in (9) to define F Ĉ(c, d̂) as the unique locally 678

indexed functor filling the next diagram: 679

self Ĉ

self C (Ĉ, Ĉ) (D̂, D̂)

(C, C) (D,D)

self q F Ĉ

K

FC

(ĥ,Ĥ)

(q,Q)
⌟

(p,P )

(h,H)

The right adjoint U Ĉ and 2-cell β̂ are constructed similarly. 680

Lifting via opfibrations. As a consequence of our general 681

theory (see Section VIII), Theorem V.2 has a dual, as follows. 682

Define a CBPV oplifting to be a strict CBPV×
lx 1-cell (p, P ) 683

such that p is a bifibration and P is an opfibration, and a map 684

of opliftings to be a pair of CBPV×
oplx 1-cells such that the 685

diagram (7) commutes in CBPV×
oplx. We write CBPVoplift 686

for the category of opliftings and their maps. 687

Corollary V.3. The codomain functor cod : CBPVoplift → 688

CBPV×
oplx is a fibration. 689

Concretely the construction is similar to that outlined above, 690

except α̂ and β̂ are defined using opfibration structure. 691

Remark V.4. This theorem is useful in practical situations 692

because in general a monad morphism σ : S → T— 693

that is, a natural transformation compatible with the units 694

and multiplications (e.g. [49])—induces an oplax adjunction 695

morphism from the Eilenberg–Moore adjunction of T to the 696

Eilenberg–Moore adjunction of S [23]. In such situations 697



Corollary V.3 applies even though Theorem V.2 does not. For698

a concrete example, see Example VI.1.699

A. Examples700

In this section we sketch some simple applications of our701

theorem. We leave a detailed exploration of the models for702

elsewhere: the aim is simply to show how our theorem yields a703

framework for building CBPV models, just as previous results704

do this for STLC and CBV models (cf. e.g. [53], [5], [42]).705

Example V.5. We start with the Storage model as in Ex-706

ample III.11. There is a lax adjunction morphism from the707

Storage model (−) × S ⊢ S ⇒ (−) on C to the Storage708

model (−) × C(1, S) ⊢ C(1, S) ⇒ (−) on Set as follows.709

The functors h and H are both given by C(1,−). The 2-710

cell α is the isomorphism C(1,− × S) ∼= C(1,−) × C(1, S)711

while βA : C(1, S ⇒ A) →
(
C(1, S) ⇒ C(1, A)

)
sends t to712

λu ∈ C(1, S) . eval ◦ ⟨t, µ⟩. The model in Set is easily lifted713

to Pred: we take any subset S ⊆ C(1, S) and consider the714

corresponding Storage model on Pred (Example IV.21). Ap-715

plying our construction, we get a CBPV model indexed by the716

category Ĉ with objects pairs
(
C ∈ C, R ⊆ C(1, X)

)
. Since717

self commutes with pullbacks (Lemma IV.13), the locally718

indexed category must also be self Ĉ. The lifted left and right719

adjoints F̂ and Û are defined by F̂ (C,R) = (C × S,R× S)720

and F̂ (C,R) = (S ⇒ C, S ⊃ R)721

Next we use the universal property of the syntactic model722

(Example IV.16) to recover a definition of CBPV logical723

relations in the syntactic style. More precisely, from purely724

semantic reasoning we recover a version of the logical rela-725

tions used by McDermott [54, p. 114].726

Example V.6. Let S be a signature of base types and basic727

operations, and let T be the free monad on Set which728

supports these operations, so that that the algebra model729

FT : self Set ⇆ SetT : UT is a sound model of CBPV730

with base types and operations in S. Such a monad always731

exists: one sends a set X to the set of terms generated using732

the basic operations with variables in X (cf. [36, Remark 7.2]).733

Now define an interpretation of base types and operations in734

(Set,SetT , FT , UT ) by setting the interpretation of a value735

type A to be the set of closed value terms of type A, and the736

interpretation of a computation type A to be the set of closed737

computations of type A. By the free property of SynS , this738

extends to a strict map SynS →
(
Set, EM(T ), FT , UT

)
.739

Finally, let T̂ be a lifting of T to Pred; for definiteness,740

we choose the free lifting [50], [42]. Now apply Lemma IV.17741

and Theorem V.2 to obtain a model (Ĉ, Ĉ, F̂ , Û) as shown:742

(Ĉ, Ĉ, F̂ , Û)
(
self Pred ⇆ EM(T̂ )

)
Syn(S)

(
self Set ⇆ EM(T )

)(cod,cod)

∃!

Objects in Ĉ consist of a value type A and a set VA of closed743

value terms of type A. Objects in Ĉ consist of a computation744

type A and a set of CA of closed terms of type A which is 745

further equipped with T̂ -algebra structure. The action of the 746

adjoints F̂ and Û in the lifted model are as follows: 747

F̂ (A, VA) =
(
FA,F T̂VA

)
Û(B,CA) =

(
UB,U T̂CA

)
Since T̂ is the free lifting, F̂ (A, VA) consists of the type FA 748

and the smallest relation containing VA that is closed under 749

return and the operations in S. On the other hand, Û(B,CA) 750

consists of the type UB and the set CA with its algebra 751

structure forgotten; this reflects the fact that force is invisible 752

in CBPV models (see [38, §15.1]). The action on products, 753

sums, and exponentials is exactly as given by McDermott. 754

Our final example is a version of Katsumata’s ⊤⊤- 755

lifting [8], adapted for CBPV models. Katsumata’s construc- 756

tion relies on the fact that for any strong monad (T, t) and 757

any T -algebra there is a canonical strong monad morphism 758

into the corresponding continuation monad. Because monad 759

morphisms induce adjunction morphisms contravariantly (Re- 760

mark V.4), this approach is not immediately available for 761

adjunction models. Our strategy, therefore, is to first pass from 762

our starting CBPV model to its corresponding algebra model, 763

and then ask for a lifting of that model via Lemma IV.17. 764

In the next example we focus on ⊤⊤-lifting but the con- 765

struction is parametric in this choice: the argument works 766

verbatim for any other lifting (e.g. the free lifting [50], [42], 767

codensity lifting [7] or the monadic lifting of [41], [40]). 768

Construction V.7 (⊤⊤-lifting for CBPV). Let (C, C, F, U) 769

be a CBPV model in which C is also cartesian closed. 770

Write T for the induced (strong) monad UF on C. By [35, 771

§11.6.2] there is a strict map into the Eilenberg–Moore model 772(
C, EM(T ), FT , UT

)
for T . Now fix an STLC fibration p : 773

E→ C—for example, the subobject fibration— and an object 774

R ∈ E as a lifting parameter. Finally, let T̂ be the ⊤⊤-lifting 775

of T with this parameter. By Lemma IV.17, we obtain a CBPV 776

fibration
(
E, EM(T̂ ), F T̂ , U T̂

)
→

(
C, EM(T ), FT , UT

)
and 777

hence, by Theorem V.2, a lifted model as shown below: 778

(Ĉ, Ĉ, F̂ , Û)
(
E, EM(T̂ ), F T̂ , U T̂

)
(C, C, F, U)

(
C, EM(T ), FT , UT

)(p,p̃) (10)

We call this the ⊤⊤-lifting of the starting model. 779

Example V.8. We construct the ⊤⊤-lifting of Levy’s model 780

of erratic choice [35, §5.5]. Thus, in our starting model the 781

category of values is Set and the adjunction is the Kleisli 782

resolution J : Set ⇆ Rel : K of the powerset monad P . The 783

induced monad on Set is also P . To lift this to Pred, we 784

take as our lifting parameter the P-algebra
(
{{0, 1}, {1}},T

)
785

where T : P({{0, 1}, {1}})→ {{0, 1}, {1}} maps p ⊆ {0, 1} 786

to 1 if 1 ∈ p and 0 otherwise. Applying⊤⊤-lifting, we obtain a 787

strong monad P̂ on Pred. This acts as P̂(A,R) := (PA, P̂R) 788

where p ∈ P̂R if and only if for all f : X → 2 satisfying 789

∀x ∈ R . f(x) = 1 we have
∑

x∈X f(x) p(x) = 1. A direct 790



calculation then shows that p ∈ P̂R if and only if every791

x ∈ p is in R. Applying our ⊤⊤-lifting construction (10),792

the resulting model is the Kleisli adjunction Pred ⇆ PredP̂793

for P̂ .794

VI. EFFECT SIMULATION795

In this section we use our CBPV-fibration theorem to796

give a semantic account to the effect simulation problem for797

languages based on CBPV. The effect simulation problem798

is about relating different denotational interpretations for the799

same computational effects. For example, it is possible to use800

both the finite powerset and list monads to give semantics to801

non-deterministic computation. An effect simulation property802

relating both semantics would say, for instance, that the set803

of possible elements denoted by the list and the powerset804

semantics are the same.805

This problem has been thoroughly studied in the context806

of Moggi’s metalanguage. In this section we show how our807

theory gives a semantic account of effect simulation for CBPV,808

via an approach similar to Katsumata’s for CBV [16]. The809

key idea is that effect simulation is about constructing a non-810

standard model over the product of the models we are trying to811

relate. Since LInd has products, which are preserved by self,812

and the 2-functor (−) × (=) preserves adjunctions, for any813

CBPV models (Ci, Ci, Fi, Ui) we get a product CBPV model814 (∏
iCi,

∏
iCi,

∏
iFi,

∏
iUi

)
.815

Semantic effect simulation now arises from Theorem V.2 as816

follows. We start with two CBPV models, which for brevity817

we denote Ci := (Ci, Ci, Fi, Ui) for i = 1, 2, a CBPV fibration818

(p, P ), and a CBPV×
lx 1-cell as shown:819

(E, E , F E , UE)

C1 × C2 C1 × C2

(p,P )

(h,H,α,β)×id

The effect simulation model is then constructed by applying820

Theorem V.2 or Corollary V.3 (cf. (8)).821

Example VI.1 (Lists and powersets for non-determinism).822

Consider the Eilenberg–Moore models for the finite powerset823

Pf and list [−] monads over Set. Their categories of algebras824

are, respectively, the category SLat of sup-semilattices and825

Mon of monoids. Since every adjunction in Set lifts to a826

LInd-adjunction, in order to simplify the calculations, we will827

compute everything in terms of Cat-adjunctions.828

There is a canonical monad morphism γ : [−] → Pfin829

which maps a list to its set of elements. This gives rise to an830

oplax adjunction morphism (recall Remark V.4) as shown:831

Set SLat Set

Set Mon Set

Pf

id

U

id
γ

[−] U

Next, we define our CBPV fibration. The lifted model over832

(Set×Set,Mon×Mon) is (BPred,BPredMon), defined833

as follows. BPred is the category of binary predicates: its 834

objects are triples (A ∈ Set, B ∈ Set, R ⊆ A × B) and 835

morphisms are pairs of functions that preserve the underlying 836

binary relation. BPredMon is defined similarly, with the 837

exception that the objects are monoids M and N , and the 838

binary relation has to be a submonoid of M × N . Apply- 839

ing Corollary V.3, we obtain a CBPV model BPred ⇆ 840

BPredSLatMon, where BPredSLatMon is defined as 841

the following pullback: 842

BPredSLatMon BPredMon

SLat×Mon Mon×Mon

⌟

The left adjoint acts on objects as F̂
(
A,B,R) = 843

(Pf (A), [B], R̂
)
, where for a finite set p ⊆ A and list l over B, 844

(p, l) ∈ R̂ if and only if for every a ∈ p there is an element b 845

in l such that (a, b) ∈ R, and, analogously, for every element 846

b in l there’s an element a ∈ p such that (a, b) ∈ R. In 847

this new model base types τb are interpreted as the diagonal 848

relation (b×b,=) over an object b and the semantics of closed 849

programs t of type Fτb has the shape (γ(l), l) for some list l. 850

VII. RELATIVE FULL COMPLETENESS 851

In this section we show how the our 2-categorical per- 852

spective leads relatively easily to a proof of relative full 853

completeness, which establishes semantically that function 854

types in CBPV are a conservative extension of the first-order 855

fragment. Our proof follows the classic Lafont argument [56]: 856

this argument is well-known, and has been applied in many 857

differing situations (e.g. [57], [58], [59], [60]). Thus, our 858

contribution here is not the proof strategy, but showing how 859

to construct the ingredients to feed into the proof. Indeed, as 860

several authors have independently noted [58], [59], the proof 861

relies on having: 862

1) A suitable “presheaf” model and a “nerve” construction; 863

2) The existence of certain comma objects (“glueing”). 864

In what follows we shall outline how each of these ingredients 865

arises in the case of CBPV models. The rest of the argument 866

follows the classical pattern, as in e.g. [57, §4.10] so, for 867

reasons of space, we omit it. 868

As well as being of interest in its own right, we view 869

the theory sketched here as a first step towards a semantic 870

account of Kripke relations of varying arity for CBPV, and 871

thereby a characterisation of definability (cf. [61], [2], [10]) 872

and normalisation-by-evaluation in the style of [62]. 873

We begin by constructing a version of presheaf models for 874

CBPV by understanding the corresponding structure in LInd. 875

A. Presheaf locally indexed categories 876

We first detail the abstract picture, then give the con- 877

crete definition. Our construction has two stages. First, as 878

a 2-category of categories enriched in a presheaf category, 879

each C-LInd has a P(C)-enriched presheaf construction. By 880

general enriched-category theoretic considerations (e.g. [63, 881



§5.7]) this defines a pseudofunctor P : C-LInd→ C-LIND882

from the 2-category of small P(C)-categories to the 2-category883

of large P(C)-categories. On objects, P(C) is the P(C)-884

enriched functor category [C,P(C)]. If F : C → D then885

P(F ) := F ! is defined by left Kan extension; this also886

determines the action on transformations.887

Applying P to C ∈ C-LInd yields a presheaf-like locally888

indexed category, but over the wrong base: it is still C-indexed.889

However, the Yoneda functor is always cartesian, so we may890

apply change of base and define P as the composite891

C-LInd P−→ C-LIND
y−→ PC-LIND (11)

Using standard enriched category-theoretic techniques, to-892

gether with Levy’s explicit identification of P(C) [38, p. 184],893

we arrive at the following characterisation of this composite.894

Recall from e.g. [36, p. 84] that, for a locally C-indexed895

category C, the category opGr C has objects (c ∈ C, C ∈ C)896

and morphisms (d,C) → (c,D) pairs of a map ρ : c → d in897

C and f : C −→
c

D in C.898

Definition VII.1. The presheaf locally indexed category899

(PC,PC) on (C, C) ∈ LInd is the PC-indexed category900

defined as follows. The objects are functors opGr Cop → Set,901

and maps τ : H −→
P

H ′ are families of maps902

τc,C : P (c)×H(c, C)→ H ′(c, C)903

natural in each argument. Composition, identities, and rein-904

dexing are as in self [opGr Cop,Set].905

(PC,PC) is equivalently the locally P(C)-indexed category906

obtained by reindexing self [opGr Cop,Set] along the cartesian907

functor π◦(−) : [Cop,Set]→ [opGr Cop,Set] induced by the908

first projection π : opGr C → C. A short check shows that, if909

C and D are cartesian closed categories, and f : C → D910

preserves products, then f∗(self D) ∈ C-LInd has products911

and C-powers. Hence PC has products and P(C)-powers.912

Moreover, there exists an adjunction913

[Cop,Set] ⇆ [opGr (self C)op,Set]

in which the left adjoint acts by P 7→ P (− × =) and914

the right adjoint acts by H 7→ H(−, 1). Using the explicit915

characterisation above, one sees this extends to a locally P(C)-916

indexed adjunction L : self PC ⇆ P(self C) : R.917

B. Presheaf CBPV models918

Because the composite P in (11) is pseudofunctorial, and919

pseudofunctors preserve adjunctions, for any CBPV model we920

get a new adjunction between the corresponding presheaf lo-921

cally indexed categories. However, we must take some care: in922

CBPV×
lx the morphisms consist of a bicartesian functor and923

a locally indexed functor but the Yoneda embedding does not924

generally preserve colimits. The fix is well-known (e.g. [64] or925

[65, §6]): if one restricts from all presheaves to finite product-926

preserving presheaves, the resulting presheaf category P×C927

is still complete, cocomplete, and cartesian closed, and the928

Yoneda lemma still holds, but now the Yoneda embedding929

y× : C→ P×C also preserves finite coproducts. Modulo this 930

adjustment, the theory above goes through verbatim. 931

Notation VII.2. For the rest of this section, we take P(C) to 932

be the category of product-preserving presheaves, and y to be 933

the restriction of the Yoneda functor to this subcategory. 934

Now consider any CBPV model C := (self C, C, F, U). 935

Since pseudofunctors preserve adjunctions, we obtain a locally 936

P(C)-indexed adjunction P(self C) ⇆ PC in which the 937

adjoints F ! and U ! are computed using the left Kan extension 938

in P(C)-Cat. We then define the presheaf CBPV model for 939

C to be the composite locally P(C)-indexed adjunction 940

F ! ◦ L : self PC ⇆ P(self C) ⇆ PC : R ◦ U !

We also obtain a Yoneda map into the presheaf model. 941

Indeed, a short calculation shows that (y)∗(P(C)) is iso- 942

morphic to [C,P(C)] in C-LIND. We therefore define a 943

locally indexed map (y, Y ) : (C, C) → (PC,PC) by taking 944

Y : C → y∗(PC) to be the P(C)-enriched Yoneda embedding: 945

Y (C) := C−(=, C). This extends to a pseudonatural transfor- 946

mation inc⇒ P from the inclusion C-LInd ↪→ C-LIND to 947

P (cf. [66, Lemma 3.7]) so there exists a pseudo adjunction 948

map as in the right-hand square below; the left-hand square is 949

a strict adjunction map. 950

self [Cop,Set] P(self C) (PC,PC)

self C self C (C, C)

self y (y,Y ) self y

⊣ ⊣

∼=

⊣

Altogether, we have shown the following proposition. 951

Definition VII.3. A locally indexed functor (f, F ) : (C, C)→ 952

(D,D) is full / faithful / fully faithful if both f and every 953

functor Fc : Cc → Dfc are full / faithful / fully faithful. A 954

CBPV×
lx 1-cell (f, F, α, β) is fully faithful if (f, F ) is. 955

Proposition VII.4. For any CBPV model C there is a fully 956

faithful CBPV×
ps 1-cell C → PC into the presheaf CBPV 957

model. We denote this by Y . 958

Note that self f is fully faithful if f is. The final observation 959

about presheaves we need is the following. 960

Proposition VII.5. For any CBPV×
lx morphism F : B → C 961

there exists a CBPV×
lx 1-cell ⟨F ⟩ : C → PB and a CBPV×

lx 962

2-cell Γ : Y ⇒ ⟨F ⟩ ◦ F . 963

Indeed, for any locally indexed functor (f, F ) : (B,B) → 964

(C, C) we obtain ⟨f⟩ : C → P(B) and ⟨F ⟩ : C → ⟨f⟩∗(PB) 965

by taking ⟨f⟩c := C(f−, c) and ⟨F ⟩(C) := Cf−(=, C). 966

Note that ⟨f⟩ preserves products because f does. The rest of 967

the calculation essentially follows by unwinding the standard 968

fact—which holds equally in the enriched setting—that ⟨f⟩ is 969

the left Kan extension of y along f . 970

C. Completing the proof 971

Fix a signature S and let SynS be the corresponding 972

syntactic model (Example III.9). Also let Synfo
S be the first- 973

order syntactic model, with function types omitted. Both these 974



models are free (Example IV.16) so there is a canonical strict975

CBPV×
lx 1-cell i : Synfo

S → SynS . We prove the following.976

Theorem VII.6 (Relative full completeness). For any signa-977

ture S, the canonical strict CBPV×
lx 1-cell i : Synfo

S →978

SynS is fully faithful.979

The remaining difficulty lies in seeing that for any CBPV×
lx980

morphism (g,G, α, β) the following comma object exists in981

CBPV×
lx, i.e. CBPV models admit glueing:982

G C

B C
(g,G,α,β)

λ

This follows from two facts. First, for any 2-category D, if C983

has comma objects then [D, C]lx also has comma objects of the984

shape above, computed component-wise (cf. [55, Prop. 4.6]).985

Since LInd has all comma objects, so does Adj(LInd)lx.986

Second, a small adaptation of the classical proof (e.g. [57])987

shows this restricts to CBPV×
lx: when C is a CBPV model988

with locally indexed pullbacks, G is also a CBPV model.989

The rest of the argument is as in the classical case990

(see e.g. [57, §4.10] or [59, §3.2]), observing that compo-991

sition in LInd reduces to (1) composition of the functors992

in DistCat on the first component, and (2) on the second993

component, composition in Cat at each index.994

VIII. LIFTING THEOREMS FOR ARBITRARY SHAPES995

In this final technical section we sketch the proof of Theo-996

rem V.2 and Corollary V.3 as special cases of a general result997

which applies generally to any “shape” of model, including998

CBV models. The key idea is that, since CBPV×
lx is a999

sub-2-category of the functor 2-category Adj(LInd)lx =1000

[Adj,LInd]lx, we may study “liftings” as in Definition V.11001

quite generally by studying functor 2-categories of the form1002

[D, C]lx for some 2-category D of “diagram shapes”.1003

We shall pair this with the following simple observation1004

about when the codomain fibration restricts to a subcategory.1005

Let C be any category with a wide subcategory of tight maps.1006

Let Lift be the full subcategory of C→ whose objects are tight1007

maps. Thus, objects of Lift are liftings—tight maps t : C →1008

C ′—and morphisms are as in C→.1009

Lemma VIII.1. Suppose that for any tight map t the pullback1010

along an arbitrary map f exists and is tight. Then the1011

codomain fibration restricts to a fibration cod : Lift→ C.1012

If every map is tight this is the codomain fibration. If just1013

the monos are tight, this is the subobject fibration.1014

In this light, our lifting theorem becomes a statement about1015

the existence of pullbacks in the 2-category [D, C]lx. Suppose1016

that C has a sub-class of tight 1-cells which are all fibrations in1017

C—intuitively, the fibrations that strictly preserve structure—1018

and that the underlying 1-category C0 is such that (1) the pull-1019

back of tight 1-cell along arbitrary 1-cells exists in C0; and (2)1020

these pullbacks are preserved by every C0(C,−) : C0 → Cat.1021

A direct calculation using the universal properties similar to 1022

that outlined in Section V then shows the following. 1023

Proposition VIII.2. In the situation just outlined, every com- 1024

ponentwise tight transformation τ : F ⇒ G in [D, C]lx 1025

has pullbacks along arbitrary transformations, which are 1026

componentwise tight. 1027

Theorem VIII.3. In the situation of Proposition VIII.2, define 1028

a lifting to be a componentwise tight lax natural transfor- 1029

mation τ : Ĥ ⇒ H : D → C, and let Lift be the full 1030

subcategory of the arrow category ([D, C]lx)→0 with objects 1031

the liftings. Then the codomain functor restricts to a fibration 1032

Lift→ [D, C]lx. 1033

Example VIII.4. We recover Theorem V.2 as follows. Take 1034

D := Adj, C := LInd, and say a morphism in LInd is tight 1035

if it is a CBPV fibration. Since CBPV×
lx is closed under 1036

pullbacks of tight maps, the fibration from Theorem VIII.3 1037

restricts to the fibration claimed in Theorem V.2. Corollary V.3 1038

follows by instantiating the theorem in LIndco. 1039

We obtain a version for CBV by varying the 2-category D. 1040

Write J : CCCatop → 2-Cat for the 2-functor sending 1041

V to the 2-category V-Actlx of (left) V-actions and lax maps 1042

(see [48, §3]). J(f) is the 2-functor W-Actlx → V-Actlx 1043

precomposing by f × id, and the action on 2-cells is defined 1044

similarly. Applying the 2-Grothendieck construction, we get a 1045

2-category Actlx of actions and lax maps. These are the “pre- 1046

models” for CBV: indeed, a monad internal to this 2-category 1047

(see [49]) is exactly a left action together with a monad that 1048

is strong for the action (e.g. [15, §3]). 1049

Example VIII.5. Take D := Mnd and C := Actlx as in 1050

Remark IV.2 and say a morphism (f, F ) in Act is tight if 1051

it is a strict map of actions and both f and F are fibrations 1052

which strictly preserve cartesian closed structure. These are 1053

fibrations in Actlx. A lifting then consists of: 1054

• Two triples consisting of a cartesian closed category, an 1055

action, and a monad that is strong for the action: 1056

(V̂, V̂× Ĉ→ Ĉ, T̂ ) (V,V× C→ C, T )

• A strict cartesian closed fibration p : V̂ → V and a 1057

fibration P : Ĉ → C such that (p, P ) is a strict map 1058

of actions and P strictly preserves the monad. 1059

Any CBV lifting is such a lifting. Moreover, since the sub- 1060

2-category of cartesian categories acting on themselves by 1061

the product structure is closed under pullbacks, applying 1062

Theorem VIII.3 to a lax map of CBV models yields a lifted 1063

CBV model, defined by pullback. 1064

IX. PERSPECTIVES 1065

In this paper we have shown how fibrations internal to 1066

2-categories can be used to define a mathematically robust 1067

and principled definintion of logical relations for CBPV. We 1068

have illustrated the viability of our definition by showing 1069

how familiar fibrational logical relations can be generalized 1070

to CBPV. As our main application, we use our framework to 1071

prove, for the first time, a conservativity property of CBPV. 1072
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et géométrie différentielle catégoriques, vol. LIX, no. 4, 2018.1139

[Online]. Available: https://cahierstgdc.com/wp-content/uploads/2018/1140

10/Vasilakopoulou-LIX-4.pdf1141

[20] J. Moeller and C. Vasilakopoulou, “Monoidal Grothendieck1142

construction,” Theory and Applications of Categories, vol. 35, no. 31,1143

2020. [Online]. Available: www.tac.mta.ca/tac/volumes/35/31/35-31.pdf1144

[21] T. Leinster, Higher Operads, Higher Categories. Cambridge University 1145

Press, Jul. 2004, preprint available online at https://doi.org/10.48550/ 1146

arXiv.math/0305049. 1147

[22] N. Johnson and D. Yau, 2-Dimensional Categories. Oxford University 1148

Press, 2021, preprint available online at 10.48550/arXiv.2002.06055. 1149

[23] D. Pumplün, “Eine Bemerkung über Monaden und adjungierte 1150

Funktoren,” Mathematische Annalen, vol. 185, pp. 329–337, 1970. 1151

[Online]. Available: http://eudml.org/doc/161964 1152

[24] C. Auderset, “Adjonctions et monades au niveau des 2-catégories,” 1153
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APPENDIX A 1293

THE BASIC DEFINITIONS OF 2-CATEGORY THEORY 1294

We briefly review the definitions of 2-categories, 2-functors, 1295

transformations, and modifications. For reasons of space we 1296

omit the coherence axioms: for full details seeerr e.g. [21], 1297

[22]. 1298

Definition A.1. A 2-category C consists of: 1299

1) A collection of objects A,B, . . . . 1300

2) For all objects A and B, a collection of morphisms from 1301

A to B, which are themselves related by morphisms: thus 1302

we have a hom-category C(A,B) whose the objects f, g : 1303

A→ B are morphisms (or 1-cells) and whose morphisms 1304

are 2-cells σ, τ : f ⇒ g. 1305

3) For all A,B and C a composition functor ◦A,B,C : 1306

C(B, C)×C(A,B)→ C(A,C) and, for all A an identity 1307

1-cell idA : A→ A, such that composition is associative 1308

and unital on both 1-cells and 2-cells. 1309

The hom-category structure means the following. For any 1310

1-cell f : A → B there is an identity 2-cell idf : f ⇒ f . 1311

Moreover, given σ : f ⇒ g : A→ B and τ : g ⇒ h : A→ B 1312

we can vertically compose to obtain a 2-cell τ ∗ σ : f ⇒ h. 1313

The functoriality of composition says that, given σ : f ⇒ 1314

f ′ : A → B and τ : g ⇒ g′ : B → C we can horizontally 1315

compose to obtain a 2-cell τ ◦ σ : g ◦ f ⇒ g′ ◦ f ′, and that 1316

the two composition operations are related by the so-called 1317

interchange law. The names correspond to how the operations 1318

look when drawn in Cat (see [25, §II.5]). Following standard 1319

2-categorical practice, we sometimes write simply Aσ or fσ 1320

instead of idA ◦ σ or idf ◦ σ, and similarly for composition 1321

on the other side. 1322

Every 2-category C has three duals, corresponding to re- 1323

versing just the 1-cells, just the 2-cells, or both. Cop has 1324

Cop(A,B) := C(B,A), so just the 1-cells are reversed. Cco 1325

has Cco(A,B) := C(A,B)op, so just the 2-cells are reversed. 1326

Ccoop has Cco(A,B) := C(B,A)op, so both 1-cells and 2-cells 1327

are reversed. 1328

As indicated above, the prototypical example is Cat: the 1329

objects are functors, the 1-cells are functors, and the 2-cells 1330

are natural transformations. 1331

Definition A.2. A 2-functor F : C → D is a mapping on 1332

objects, 1-cells, and 2-cells which preserves both horizontal 1333

and vertical composition, so that F (g ◦ f) = F (g) ◦F (f) and 1334

F (idA) = idFA on 1-cells, and F (τ ◦ σ) = F (τ) ◦ F (σ), 1335

F (τ ∗ σ) = F (τ) ∗ F (σ), and F (idf ) = idFf on 2-cells. 1336

When considering functors between monoidal categories, 1337

there are four grades of strictness we can ask for: strict, 1338

pseudo (strong), lax, or oplax. The same applies for morphisms 1339

between 2-functors. 1340

Definition A.3. Let F,G : C → D be 2-functors. A lax natural 1341

transformation σ : F → G consists of a 1-cell σC : FC → 1342
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GC for each C ∈ C together with, for every 1-cell f : C → C ′
1343

in C, a 2-cell σf witnessing the naturality as shown below:1344

FC FC ′

GC GC ′

Ff

σC

σf
σC′

Gf

This is required to satisfy unit and associativity laws, and be1345

natural in f . An oplax natural transformation is a transfor-1346

mation in Cco: the 2-cell σf is reversed. A pseudonatural1347

transformation is a transformation in which every σf is an1348

isomorphism. A strict (or 2-natural) transformation is one in1349

which every σf is the identity.1350

Transformations play the same role as natural transforma-1351

tions in category theory. Since 2-category theory has an extra1352

layer of data, there is an extra form of morphism. We state1353

the definition for lax natural transformations; corresponding1354

definitions hold for oplax, pseudo, and strict transformations.1355

Definition A.4. Let σ, τ : F → G : C → D be lax natural1356

transformations. A modification Γ : σ → τ consists of a 2-cell1357

ΓC : σC ⇒ τC for each C ∈ C, subject to an axiom making1358

it compatible with the 2-cells σf and τf .1359

For any 2-categories C and D, we therefore obtain four 2-1360

functor categories. For each w ∈ {st,ps, lx, oplx} there is a1361

2-category [C,D]w with objects the 2-functors C → D, 1-cells1362

either the strict, pseudo, lax, or oplax transformations, and1363

2-cells the modifications.1364
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