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Reasoning about the cost of executing programs is one of the fundamental questions in computer science. In

the context of programming with probabilities, however, the notion of cost stops being deterministic, since

it depends on the probabilistic samples made throughout the execution of the program. This interaction is

further complicated by the non-trivial interaction between cost, recursion and evaluation strategy.

In this work we introduce cert: a Call-By-Push-Value (CBPV) metalanguage for reasoning about probabilistic

cost.We equip certwith an operational cost semantics and define two denotational semantics — a cost semantics

and an expected-cost semantics. We prove operational soundness and adequacy for the denotational cost

semantics and a cost adequacy theorem for the expected-cost semantics.

We formally relate both denotational semantics by stating and proving a novel effect simulation property

for CBPV. We also prove a canonicity property of the expected-cost semantics as the minimal semantics for

expected cost and probability by building on recent advances on monadic probabilistic semantics.

Finally, we illustrate the expressivity of cert and the expected-cost semantics by presenting case-studies

ranging from randomized algorithms to stochastic processes and show how our semantics capture their

intended expected cost.

1 INTRODUCTION
This paper addresses the question: what is the semantic essence of expected cost analysis? Since

randomized algorithms [34] and reasoning about resource consumption in programs are central

pillars of computer science, it is important to lay these analyses on solid theoretical grounds.

Our denotational understanding of deterministic cost analysis has been consolidated by the

line of work initiated by Danner et al. [10–12, 27]. These ideas were later elegantly refined in the

context of modal dependently-typed theories [36]. However, in the case of expected cost analysis,

while much work has been done in their theory [2, 17, 23] and practice [4, 30, 43], there is no

denotational semantics satisfying the following desiderata:

• Compositional. When reasoning about the expected cost of programs, it should suffice to

reason about the cost of its components.

• Close to probability theory, allowing for useful lemmas to be used when reasoning about

programs.

• Validates interesting and non-trivial program equations. For instance, in the context of

probabilistic programming, being able to reorder independent program fragments is natural

and useful for justifying program optimizations.

In this work we propose the first semantics that validates all of these desiderata. Furthermore,

we establish formal connections and soundness properties between this novel semantics and other
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2 Pedro H. Azevedo de Amorim

denotational approaches to expected cost analysis [2, 17] by proving a generalization of Filinski’s

effect simulation property [14].

Our Work: Denotational Methods for Expected Cost. In this work we shed some light on the

semantic foundations of expected cost analysis in the context of recursive probabilistic functional

programs. We start by defining cert: a call-by-push-value (CBPV) metalanguage with operations for

sampling from uniform distributions and for incrementing the cost of programs. This metalanguage

is expressive enough to represent the cost structure of recursive probabilistic algorithms and

stochastic processes. It is the first cost-aware metalanguage that can accommodate continuous
distributions, higher-order functions, recursion, compositional expected cost analysis and
different evaluation strategies.

Besides equipping our metalanguage with an equational theory and an operational cost semantics,

we provide two denotational semantics for reasoning about the cost of probabilistic programs. The

first one, which we call the cost semantics, uses the familiar writer monad transformer to combine

a cost monad with a subprobability monad. The second semantics, which we call the expected cost
semantics, encapsulates the compositional structure of the expected cost as a monad, allowing us to

give a denotational semantics that directly tracks the expected cost of programs. This semantics is

the first one that validates all of the proposed desiderata:

• By making the expected cost an explicit component of the expected cost monad defined in

Section 3.3, the semantics enables compositional expected cost reasoning.

• It is based on familiar tools from higher-order probability theory [42]. This will be useful in

Section 6, where theorems from probability theory are used for reasoning about a stochastic

convex hull algorithm [15].

• The equational theory validated by the semantics includes useful program equations such

as commutativity properties that are not validated by other semantics, such as the pre-

expectation semantics of Avanzini et al. [4], while not validating undesirable equations that

are not physically justified (cf. Section 4.2).

In order to justify the mutual validity of these distinct semantics, we show that the expected cost

semantics is a sound approximation to the cost semantics and to the equational theory. In the

absence of recursion, we show that this approximation is an equality while it is an upper bound

in the presence of unbounded recursion. In order to achieve this soundness result, we state and

prove a generalization of the effect simulation problem [25] beyond base types. This generalization

interacts well with the CBPV type structure and provides a novel semantic technique for doing

relational reasoning of effectful programs.

Furthermore, we compare our semantics to the influential pre-expectation program transforma-

tions introduced by Kaminski et al. [23]. We argue that our expected cost semantics provides better

abstractions for expected-cost reasoning, since many useful properties that are proved by delicate

syntactic arguments in the pre-expectation semantics, hold automatically and unconditionally in

our semantics. Furthermore, we show that our expected cost model satisfies useful commutativity

equations that are not validated by the pre-expectation one. Finally, we prove an unexpected con-

nection between these two monads by showing that the expected cost monad can be obtained as the

minimal submonad of the pre-expectation monad that can accommodate probability and expected

cost, showing that besides providing a compositional account to expected cost, the expected cost

monad is canonical.

As applications, we showcase the capabilities of our semantics by using it to reason about the

expected cost of probabilistic algorithms and stochastic processes. We highlight our analysis of

a stochastic variant of the convex hull algorithm [15] that was outside of reach of other logic/PL
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Denotational Foundations for Expected Cost Analysis 3

Value Types 𝜏 B 𝑈𝜏 | 1 | N | R | 𝜏 × 𝜏
Computation Types 𝜏 B 𝐹𝜏 | 𝜏 → 𝜏

Computation Terms 𝑡,𝑢 B 𝜆𝑥 . 𝑡 | 𝑡 𝑉 | ifZero𝑉 then 𝑡 else𝑢 | force 𝑉
| (𝑥 ← 𝑡);𝑢 | produce 𝑉 | let 𝑥 be 𝑉 in 𝑡
| succ 𝑡 | pred 𝑡 | let (𝑥,𝑦) = 𝑉 in 𝑡

Value Terms 𝑉 B 𝑥 | () | 𝑛 ∈ N | 𝑟 ∈ R | thunk 𝑡 | (𝑉1,𝑉2)
Terminal Computations 𝑇 B produce 𝑉 | 𝜆𝑥 . 𝑡 | force 𝑥 | ifZero𝑥 then 𝑡 else𝑢
Evaluation Contexts 𝐶 B [ ] | 𝜆𝑥 . 𝐶 | 𝐶 𝑉 | ifZero𝑉 then𝐶 else𝑢

| ifZero𝑉 then 𝑡 else𝐶 | (𝑥 ← 𝐶);𝑢 | (𝑥 ← 𝑡);𝐶
| let 𝑥 be 𝑉 in 𝐶 | succ𝐶 | pred𝐶 | let (𝑥,𝑦) = 𝑉 in 𝐶

Fig. 1. Types and Terms of CBPV

techniques for expected cost analysis due to its combination of continuous probability, modular in-

teraction of cost and behaviour, and deep probabilistic reasoning. As a guiding example, throughout

the paper we will use geometric distributions to illustrate different aspects of cert and its semantics.

Our approach contrasts with other work done on expected cost analysis where the language

analyzed was either imperative [4, 23, 29] or first-order [30, 41], or the cost structure was given

by non-compositional methods [1, 3, 8, 43]. In spirit, the closest to what we have done is work by

Kavvos et al. [27], which does denotational cost analysis in a deterministic recursive setting, work

by Avanzini et al [2], which uses a continuation-passing style transformation to reason about the

expected cost of a call-by-value language.

Our contributions. The main contributions of this paper are the following

• We introduce the metalanguage cert, a CBPV variant with primitives for recursion, increasing

cost (charge 𝑐) and for sampling from uniform distributions (uniform). (§2)

• We define a novel expected cost semantics based on an expected cost monad that accommo-

dates familiar and useful reasoning principles. (§3.2)

• We prove a generalization of the effect simulation problem for cost semantics using a novel

logical relations technique for denotational relational reasoning. (§4.1)

• We prove an adequacy proof of the probabilistic cost semantics with respect to the operational

cost semantics. (§4.3)

• We prove a universal property of the expected cost monad as the minimal submonad of the

continuation monad that can accommodate subprobability distributions and cost. (§5)

We also justify the applicability of our semantics through use-cases that illustrate how the

expected cost semantics can be used to reason about expected cost of stochastic processes and

randomized algorithms. In particular, the stochastic convex hull example was outside of scope of

existing techniques.

2 cert : A PROBABILISTIC COST-AWARE METALANGUAGE
In this section we introduce the type system, equational theory and operational semantics of cert.
The language is a Call-By-Push-Value (CBPV) [31] calculus extended with operations for cost,

probabilistic sampling and recursion. For the sake of presentation, we introduce it in parts: we begin

by going over the core CBPV calculus and then present its extensions with effectful operations and

lists, respectively. The operational semantics is defined as a weighted Markov chain that accounts
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4 Pedro H. Azevedo de Amorim

Γ1, 𝑥 : 𝜏, Γ2 ⊢𝑣 𝑥 : 𝜏

𝑛 ∈ N
Γ ⊢𝑣 𝑛 : N

𝑟 ∈ R
Γ ⊢𝑣 𝑟 : R Γ ⊢𝑣 () : 1

Γ ⊢𝑣 𝑉 : N Γ ⊢𝑐 𝑡 : 𝜏 Γ ⊢𝑐 𝑢 : 𝜏

Γ ⊢𝑐 ifZero𝑉 then 𝑡 else𝑢 : 𝜏

Γ ⊢𝑣 𝑉1 : 𝜏1 Γ ⊢𝑣 𝑉2 : 𝜏2
Γ ⊢𝑣 (𝑉1,𝑉2) : 𝜏1 × 𝜏2

op ∈ O(𝜏, 𝜏 ′)
Γ ⊢ op : 𝜏 → 𝐹𝜏 ′

Γ, 𝑥 : 𝜏 ⊢𝑐 𝑡 : 𝜏
Γ ⊢𝑐 𝜆𝑥 . 𝑡 : 𝜏 → 𝜏

Γ ⊢𝑣 𝑉 : 𝜏 Γ ⊢𝑐 𝑡 : 𝜏 → 𝜏

Γ ⊢𝑐 𝑡 𝑉 : 𝜏

Γ ⊢𝑣 𝑉 : 𝜏

Γ ⊢𝑐 produce 𝑉 : 𝐹𝜏

Γ ⊢𝑐 𝑡 : 𝜏
Γ ⊢𝑣 thunk 𝑡 : 𝑈𝜏

Γ ⊢𝑣 𝑉 : 𝑈𝜏

Γ ⊢𝑐 force 𝑉 : 𝜏

Γ ⊢𝑐 𝑡 : 𝐹𝜏 ′ Γ, 𝑥 : 𝜏 ′ ⊢𝑐 𝑢 : 𝜏

Γ ⊢𝑐 (𝑥 ← 𝑡);𝑢 : 𝜏

Γ ⊢𝑣 𝑉 : 𝜏1 × 𝜏2 Γ, 𝑥 : 𝜏1, 𝑦 : 𝜏2 ⊢𝑐 𝑡 : 𝜏
Γ ⊢𝑐 let (𝑥,𝑦) = 𝑉 in 𝑡 : 𝜏

Fig. 2. CBPV typing rules

for the cost and output distributions of programs. It is defined using the standard measure-theoretic

treatment of operational semantics for continuous distributions, cf. Vákár et al. [42].

We chose CBPV as the core of cert due to its type and term-level separation of values and

computations. Such a separation allows for a fine grained control over the execution of programs,

providing a uniform treatment of different evaluation strategies such as Call-By-Name (CBN) and

Call-By-Value (CBV).

Figure 1 depicts the CBPV syntax. Note that the base types 1,N and R are value types, the product

types is also a value and arrow types are computation types that receive a value type as input and

a computation type as output. At the center of the CBPV formalism are the type constructors 𝐹

and 𝑈 which allows types to move between value types and computation types. The constructor 𝐹

plays a similar role to the monadic type constructor𝑇 from the monadic 𝜆-calculus [33], while𝑈 is

used to represent suspended — or thunked — computations.

This two-level approach also manifests itself at the type judgment level, where the judgment

Γ ⊢𝑣 𝑉 : 𝜏 is only defined for value types, while Γ ⊢𝑐 𝑡 : 𝜏 is defined for computation types, as shown

in Figure 2. Both contexts only bind values, which justifies the arrow type having a value type

in its domain, so that lambda abstractions only introduce values to the context. The if-then-else

operation checks if the guard 𝑉 is 0, in which case it returns the first branch, and otherwise it

returns the second branch. The language is also parametric on a set of operations O which contains

arithmetic functions. The product introduction rule pairs two values while its elimination rule

unpairs a product and uses them in a computation. Lambda abstraction binds a new value to the

context while application applies a function to a value.

The less familiar rules are those for the type constructors 𝐹 and 𝑈 . The introduction rule for

computations is produce𝑉 , which is the computation that does not incur any effect and just outputs

the value𝑉 , while the introduction rule for𝑈 , thunk 𝑡 , suspends the computation 𝑡 . Its elimination

rule force𝑉 resumes the suspended computation𝑉 . The last rule, 𝑥 ← 𝑡 ;𝑢 is what makes it possible

to chain effectful computations together, since it receives a computation of type 𝐹𝜏 as input, runs it

and binds the result to the continuation 𝑢, which eventually will output a computation of type 𝜏 .
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Denotational Foundations for Expected Cost Analysis 5

fix 𝑓 : list(𝜏) → 𝐹N. 𝜆𝑙 : list(𝜏).
case 𝑙 of

| nil⇒
produce 0

| (hd, tl) ⇒
𝑛 ← (force 𝑓 ) 𝑡𝑙
produce (1 + 𝑛)

fix 𝑓 : list(𝜏) → 𝐹 (list(𝜏) × list(𝜏)) .
𝜆𝑙 : list(𝜏) .
𝜆𝑝 : 𝜏 → 𝐹N.

case 𝑙 of

| nil⇒
produce (nil, nil)
| (hd, tl) ⇒
𝑛 ← 𝑝 ℎ𝑑

(𝑙1, 𝑙2) ← (force 𝑓 ) 𝑝 𝑡𝑙
if 𝑛 then

produce (consℎ𝑑 𝑙1, 𝑙2)
else

produce (𝑙1, consℎ𝑑 𝑙2)

Fig. 3. Length function length (left) and filter function biFilter (right).

This is a generalization of the monadic let rule where the output type does not have to be of type

𝐹𝜏 .

The syntax differs a bit from the monadic semantics of effects, but, as it is widely known, every

strong monad over a Cartesian closed category can interpret the CBPV calculus, as we describe in

Appendix A and described in Section 12 of [31].

In Figure 1 there is also a grammar for terminal computations and computation contexts𝐶 . These

are standard and the latter represents computations with a single hole [ ] that may be filled in by a

computation 𝑡 by a non-capture-avoiding substitution, which we denote by 𝐶 [𝑡].
Though this language is effective as a core calculus, by itself it cannot do much, since it has

no “native” effect operations, meaning that there are no programs with non-trivial side-effects. In

this section we extend CBPV so that it can program with three different effects: cost, probability

and unbounded recursion. We call this extension cert, for calculus for expected run time, and we

conclude the section by presenting its equational theory and operational semantics.

2.1 Cost and Probabilistic Effects
As it is common in denotational approaches to cost semantics, it is assumed that there is a cost

monoidC— usually interpreted byN and addition —which acts on programs by operations charge 𝑐
that increases the current cost of the computation by 𝑐 units, for every 𝑐 : C. The value types are
extended with a type C, constants · ⊢𝑣 𝑐 : C and the monoid structure · ⊢𝑣 0 : C and · ⊢𝑣 𝑉1 +𝑉2 : C.
Furthermore, since we also want to program with probabilities and unbounded recursion, we extend

the language with a sampling primitive, as well as recursive definitions:

Γ ⊢𝑣 𝑉 : C

Γ ⊢𝑐 charge𝑉 : 𝐹1 Γ ⊢𝑐 uniform : 𝐹R

Γ, 𝑥 : 𝑈𝜏 ⊢𝑐 𝑡 : 𝜏
Γ ⊢𝑐 fix𝑥 . 𝑡 : 𝜏

The operation uniform uniformly samples a real number from the interval [0, 1] and fix is the
familiar fixed-point operator used for defining recursive programs. In interest of reducing visual
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6 Pedro H. Azevedo de Amorim

pollution and simplifying the presentation, charge𝑉 ; 𝑡 desugars to (𝑥 ← charge𝑉 ); 𝑡 , when 𝑥 is

not used in the body of 𝑡 , and we will assume that the cost monoid is N.
With the uniform distribution primitive it is possible to define uniform distributions over discrete

sets which, given a natural number𝑛, outputs a uniform distribution rand𝑛 over the set {0, . . . , 𝑛−1}.
This can be desugared to the program 𝜆𝑛 . 𝑥 ← uniform; produce (⌊𝑛𝑥⌋) : N→ 𝐹N, where ⌊·⌋ is
the floor function. Biased choices 𝑡1 ⊕𝑝 𝑡2 desugar to 𝜆𝑝 . 𝑥 ← uniform; ifZero𝑥 ≤ 𝑝 then 𝑡1 else 𝑡2 :
R→ 𝜏 , where 𝑡1, 𝑡2 have type 𝜏 and ≤: R→ R→ 𝐹N is the comparison function that returns 0 if

the first argument is less or equal to the second argument and 1 otherwise.

Example 2.1 (Geometric distribution). With these primitives we can already program non-trivial

distributions. For instance, the geometric distribution can be expressed as the program

· ⊢𝑐 fix𝑥 . (produce 0) ⊕0.5 ((𝑦 ← force 𝑥); produce (1 + 𝑦)) : 𝐹N,

Operationally, the program flips a fair coin, if the output is 0, it outputs 0, otherwise it recurses on

𝑥 , binds the value to 𝑦 and outputs 1 + 𝑦. By the typing rule of recursive definitions, the variable 𝑥

is a thunk, meaning that it must be forced before executing it.

By having fine-grained control over which operations have a cost, it is possible to orchestrate

your program with charge 𝑐 operations in order to encode different cost models. For instance, if we

want to keep track of how many coins were tossed when running the geometric distribution, we

can modify it as such

fix𝑥 . charge 1; (produce 0) ⊕0.5 (𝑦 ← force 𝑥 ; produce (1 + 𝑦)) : 𝐹N

Example 2.2 (Deterministic Programs). The charge operation can also be used to keep track of

the number of recursive calls in your program. For instance, a recursive program that computes

the factorial function can be instrumented to count the number of recursive calls as follows:

fix 𝑓 . 𝜆𝑛 . ifZero𝑛 then (produce 0) else (charge 1;𝑛 ∗ (force 𝑓 ) (𝑛 − 1))

Whenever the if-guard is false, the cost is incremented by 1 and the function is recursively called.

2.2 Lists
Frequently, cost analyses are defined for algorithms defined over inductive data types, such as lists.

As such, we will also extend our language with lists over value types.

𝜏 B · · · | list(𝜏)
𝑉 B · · · | nil | cons𝑉1𝑉2
𝑡 B · · · | (case𝑥 of nil⇒ 𝑡 | cons𝑥 𝑥𝑠 ⇒ 𝑢)
𝑇 B · · · | (case𝑥 of nil⇒ 𝑡 | cons𝑥 𝑥𝑠 ⇒ 𝑢)
𝐶 B · · · | (case𝑥 of nil⇒ 𝐶 | cons𝑥 𝑥𝑠 ⇒ 𝑢) | (case𝑥 of nil⇒ 𝑡 | cons𝑥 𝑥𝑠 ⇒ 𝐶)

Γ ⊢𝑣 nil : list(𝜏)
Γ ⊢𝑣 𝑉1 : 𝜏 Γ ⊢𝑣 𝑉2 : list(𝜏)

Γ ⊢𝑣 cons𝑉1𝑉2 : list(𝜏)

Γ ⊢𝑣 𝑉 : list(𝜏) Γ ⊢𝑐 𝑡 : 𝜏 Γ, 𝑥 : 𝜏, 𝑥𝑠 : list(𝜏) ⊢𝑐 𝑢 : 𝜏

Γ ⊢𝑐 case𝑉 of nil⇒ 𝑡 | cons𝑥 𝑥𝑠 ⇒ 𝑢 : 𝜏
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Denotational Foundations for Expected Cost Analysis 7

The primitive nil is the empty list, cons appends a value to the front of a list and case is for
pattern-matching on lists and, in the presence of fix , can be used for defining non-structurally

recursive functions over lists.

Example 2.3. The function length that computes the length of a list and a binary version of the

familiar filter function biFilter that outputs two lists, one for the true elements and one for the false

elements, are, respectively, defined in the left and right parts of Figure 3. Note that since we have

adopted a N-valued if-statement, the predicate 𝑝 above outputs a natural number. Furthermore,

since the recursion operation adds a thunk to the context, in order to call the recursive function

you must first force its execution.

We conclude this section by mentioning that there are many other sensible extensions, such as

recursive and sum types. For our purposes, they are not necessary and so, in order to keep the

language simple, we omit them. That being said, from a semantic point of view, these extensions

are well-understood and straightforward to be accommodated by the denotational semantics we

present in Section 3.

2.3 Equational Theory
We want to define a syntactic sound approximation to the expected cost of programs. We do this

by extending the usual equational theory of CBPV with rules for the monoid structure of the

charge operation. We present some of the equational theory in Figure 4, with other rules which

are standard in CBPV languages shown in Appendix A. The first two rules are the familiar 𝛽 and

𝜂-rules for the arrow type, the 0Mon and ActMon rules are the monoid equations for the charge

operation. The rule ThunkForce says that forcing a thunked computation is the same thing as

running the computation, the rules IfZ and IfS explain how if-statements interact with natural

numbers and the rule Fix is the fixed point equation that unfolds one recursive call of the recursive

computation 𝑡 .

2.4 Operational Semantics
Since we are interested in modeling the cost of running programs, we will define an operational

cost semantics which is closer to the execution model of programs. When defining semantics for

probabilistic languages with continuous distributions, one must be careful to define it so that it is a

measurable function.

In this section, we begin by showing the the cert syntax can be equipped with a measurable

space structure that makes the natural syntax operations, such as substitution, measurable. Then,

the operational semantics can be defined as a Markov kernel over the syntax, as it is usually done

in probabilistic operational semantics for continuous distributions [13, 42]. After defining the

operational semantics, we conclude by proving the subject reduction property.

Syntax Spaces and Kernels. Before defining the operational semantics, we need some definitions

from measure theory.

Definition 2.4. A measurable space is a pair (𝑋, Σ𝑋 ⊆ P(𝑋 )), where 𝑋 is a set and Σ is a 𝜎-

algebra, i.e. a collection of subsets that contains the empty set and is closed under complements

and countable union.

Definition 2.5. A measurable function 𝑓 : (𝑋, Σ𝑋 ) → (𝑌, Σ𝑌 ) is a function 𝑓 : 𝑋 → 𝑌 such that

for every 𝐴 ∈ Σ𝑌 , 𝑓 −1 (𝐴) ∈ Σ𝑋 .

Definition 2.6. A subprobability distribution over a measurable space (𝑋, Σ𝑋 ) is a function

𝜇 : Σ𝑋 → [0, 1] such that 𝜇 (∅) = 0, 𝜇 (𝑋 ) ≤ 1 and 𝜇 (⊎𝑛∈N𝐴𝑛) =
∑

𝑛∈N 𝜇 (𝐴𝑛).
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8 Pedro H. Azevedo de Amorim

𝛽-law

Γ, 𝑥 : 𝜏 ⊢𝑐 𝑡 : 𝜏 Γ ⊢𝑣 𝑉 : 𝜏

Γ ⊢ 𝑡{𝑉 /𝑥} = (𝜆𝑥 . 𝑡) 𝑉 : 𝜏

𝜂-law

Γ ⊢𝑐 𝑡 : 𝜏 → 𝜏

Γ ⊢𝑐 (𝜆𝑥 . 𝑡 𝑥) = 𝑡 : 𝜏 → 𝜏

0mon

Γ ⊢𝑐 𝑡 : 𝜏
Γ ⊢ (charge 0; 𝑡) = 𝑡 : 𝜏

ActMon

Γ ⊢ charge 𝑐; charge𝑑 = charge 𝑐 + 𝑑 : 𝐹1

ThunkForce

Γ ⊢𝑐 𝑡 : 𝜏
Γ ⊢ force (thunk (𝑡)) = 𝑡 : 𝜏

IfZ

Γ ⊢𝑐 𝑡 : 𝜏 Γ ⊢𝑐 𝑢 : 𝜏

Γ ⊢ ifZero 0 then 𝑡 else𝑢 = 𝑡 : 𝜏

IfS

Γ ⊢𝑐 𝑡 : 𝜏 Γ ⊢𝑐 𝑢 : 𝜏

Γ ⊢ ifZero (𝑛 + 1) then 𝑡 else𝑢 = 𝑢 : 𝜏

Fix

Γ, 𝑥 : 𝑈𝜏 ⊢𝑐 𝑡 : 𝜏
Γ ⊢ (fix𝑥 . 𝑡) = 𝑡{𝑥/thunk (fix𝑥 . 𝑡)} : 𝜏

Fig. 4. Equational Theory (Selected Rules)

The operational semantics will be modeled as a (sub)Markov kernel, a generalization of transition

matrices and Markov chains.

Definition 2.7. A sub-Markov kernel between measurable spaces (𝑋, Σ𝑋 ) and (𝑌, Σ𝑌 ) is a function
𝑓 : 𝑋 × Σ𝑌 → [0, 1] such that

• For every 𝑥 : 𝑋 , 𝑓 (𝑥,−) : Σ𝑌 → [0, 1] is a subprobability distribution

• For every 𝐴 : Σ𝑌 , 𝑓 (−, 𝐴) : 𝑋 → [0, 1] is a measurable function

We denote the set of computation terms by Λ, the set of values byV𝑎𝑙 and the set of terminal

computations by 𝑇 . Let 𝑡 (resp. 𝑉 ) be a computation (resp. value), fix the term traversal order

left-to-right and let 𝑧1, 𝑧2, . . . 𝑧𝑛, . . . be a sequence of distinct and ordered variables disjoint from

the set of term variables. The traversal order gives rise to a canonical enumeration of 𝑡 ’s (resp. 𝑉 ’s)

occurrences of numerals 𝑟 ∈ R, which we denote by the sequence 𝑟1, 𝑟2, . . . , 𝑟𝑛 . By substituting

these occurrences by the variables 𝑧1, 𝑧2, . . . , 𝑧𝑛 , we obtain the term 𝑡{𝑧1, . . . , 𝑧𝑛/𝑟1, . . . , 𝑟𝑛} (resp.
𝑉 {𝑧1, . . . , 𝑧𝑛/𝑟1, . . . , 𝑟𝑛}). Let Λ𝑛 (resp. V𝑎𝑙𝑛) be the set of such substituted terms with exactly 𝑛

numerals.

Note that the sets Λ𝑛 and V𝑎𝑙𝑛 are countable and that there are bijections Λ � Σ𝑛:N,𝑡 :Λ𝑛
R𝑛

and V𝑎𝑙 � Σ𝑛:N,𝑡 :V𝑎𝑙𝑛R
𝑛
, where Σ is the dependent sum operation: for instance, every compu-

tation term 𝑡 can be decomposed into a sequence of its numerals 𝑟1, . . . , 𝑟𝑛 and substituted term

𝑡{𝑧1, . . . , 𝑧𝑛/𝑟1, . . . , 𝑟𝑛}, and, conversely, every sequence of numerals and substituted term 𝑡 can be

mapped to the term 𝑡{𝑟1, . . . , 𝑟𝑛/𝑧1, . . . , 𝑧𝑛} — note the reversed order of substitution.

Therefore, we can equip Λ with the coproduct 𝜎-algebra: (Λ, ΣΛ) = Σ𝑛:N,𝑡 :Λ𝑛
(R𝑛, ΣR𝑛 ). More

concretely, a subset 𝐴 ⊂ Λ is measurable if, and only if,

∀𝑛 ∈ N, 𝑡 : Λ𝑛, {(𝑟1, . . . , 𝑟𝑛) ∈ R𝑛 | 𝑡{𝑟1, . . . , 𝑟𝑛/𝑧1, . . . , 𝑧𝑛} ∈ 𝐴} ∈ ΣR𝑛
The measurable space structure ofV𝑎𝑙 is defined using a similar coproduct.

Given a pair of a context Γ and a computation type 𝜏 , the measurable spaces ΛΓ⊢𝜏
and 𝑇 Γ⊢𝜏

are

the subspaces of well-typed computations and terminal computations under context Γ and output

type 𝜏 , respectively. Given a value type 𝜏 , the measurable spaceV𝑎𝑙Γ⊢𝜏 ⊆ V𝑎𝑙 is the subspace of
well-typed values under context Γ and output type 𝜏 . The measurable space structures of ΛΓ⊢𝜏

, 𝑇 ,

, Vol. 1, No. 1, Article . Publication date: February 2025.
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𝑇 Γ⊢𝜏
and 𝑇 Γ⊢𝜏

are defined using the appropriate subspace 𝜎-algebras. The following metatheoretic

lemmas are useful and standard.

Lemma 2.8. If Γ, 𝑥 : 𝜏 ⊢𝑐 𝑡 : 𝜏 and Γ ⊢𝑣 𝑉 : 𝜏 then Γ ⊢𝑐 𝑡{𝑉 /𝑥} : 𝜏 .

Lemma 2.9 (cf. Lemma 3.7 of Ehrhard et al. [13]). For every variable 𝑥 , the function ·{·/𝑥} :

Λ ×V𝑎𝑙 → Λ is measurable.

Therefore, for every context Γ, computation type 𝜏 and value type 𝜏 , the substitution function

restricts to measurable functions ·{·/𝑥} : ΛΓ,𝑥 :𝜏⊢𝜏 ×V𝑎𝑙Γ⊢𝜏 → ΛΓ⊢𝜏
.

Operational Kernels. In order to capture the cost of running a computation, we define costful
kernels as a sub-Markov kernel 𝑋 × ΣN×𝑌 → [0, 1]. Given two costful kernels 𝑓 and 𝑔, their

composition 𝑓 ◦ 𝑔 : 𝑋 × ΣN×𝑍 → [0, 1] is defined, with slight abuse of notation, as:

(𝑔 ◦ 𝑓 ) (𝑥, 𝑛1 + 𝑛2,𝐶) =
∫
𝑌

𝑔(𝑦, 𝑛2,𝐶) 𝑓 (𝑥, 𝑛1,−)(d𝑦)

In plain terms, every term reduces to a subprobability distribution over costs and terminal compu-

tations. Their composition is defined so that the probability that the composition cost is 𝑛1 + 𝑛2 is
the probability that the input 𝑓 will cost 𝑛1 and the continuation 𝑔 will cost 𝑛2, i.e. the product of

both events averaged out using an integral. We use the Haskell syntax >>= for kernel composition.

We can now define the operational semantics as the limit of a sequence of approximate semantics

given by costful kernels ⇓𝑛 : Λ × ΣN×𝑇 → [0, 1]. The approximate semantics ⇓𝑛 are defined by

recursion on 𝑛, where the base case is defined as ⇓0= ⊥, i.e. the 0 measure. When 𝑛 > 0, the

recursive definition is depicted in Figure 5.

Though we are using the familiar relational definition of operational semantics, they are func-

tional in nature. We use the notation of Vákár et al. [42], where the inference rule

𝑘1 (𝑡)𝑤1 𝑘2 (𝑡,𝑤1)𝑤2 · · · 𝑘𝑛 (𝑡,𝑤1, . . . ,𝑤𝑛)𝑣
𝑙 (𝑡) 𝑓 (𝑡,𝑤1, . . . ,𝑤𝑛, 𝑣)

denotes the kernel 𝑘1 (𝑡) >>= (𝜆𝑤1 . 𝑘2 (𝑡,𝑤1) >>= . . . 𝛿 𝑓 (𝑡,𝑤1,...,𝑤𝑛,𝑣) ). We also simplify the presentation

by using guarded kernel composition. For instance, in the 𝛽-reduction rule, whenever 𝑡 reduces to

something which is not a 𝜆-abstraction, the kernel composition loops. Besides the non-standard

presentation, the semantics is a fairly standard CBPV big-step semantics [31]. For example, terminal

computations cannot reduce any further, so they output a point mass distribution over 0 cost

and themselves. In the case of effectful operations, the charge operation steps to a point mass

distribution over () and the cost; the sample operation reduces to an independent distribution of

the point mass distribution at 0 and the Lebesgue uniform measure 𝜆 on the interval [0, 1].
It follows by a simple induction that the semantics ⇓𝑛 is monotonic in 𝑛. Since the space of

subprobability distributions forms a CPO, we can define the semantics as the supremum of its

finite approximations ⇓ = ⊔
𝑛 ⇓𝑛 . As usual, it is possible to prove subject reduction by induction on

well-typed terms.

Lemma 2.10 (Subject reduction). If Γ ⊢𝑐 𝑡 : 𝜏 , then the composition ⇓ ◦ 𝜄 : ΛΓ⊢𝜏 → 𝑃≤1 (N × 𝑇 )
factors as ΛΓ⊢𝜏 → 𝑃≤1 (N×𝑇 Γ⊢𝜏 ) ↩→ 𝑃≤1 (N×𝑇 ), where 𝜄 : ΛΓ⊢𝜏 ↩→ Λ is the inclusion function. More
colloquially, well-typedness is stable under the operational semantics.

3 DENOTATIONAL SEMANTICS
This section presents two concrete denotational semantics to our language:
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10 Pedro H. Azevedo de Amorim

produce 𝑉 ⇓𝑛 𝛿 (0,produce 𝑉 )
𝑡 ⇓𝑛 𝜇

force (thunk 𝑡) ⇓𝑛 𝜇 uniform ⇓𝑛 𝛿0 ⊗ 𝜆 𝜆𝑥 . 𝑡 ⇓𝑛 𝛿 (0,𝜆𝑥 . 𝑡 )

𝑡 ⇓𝑛 𝜆𝑥 . 𝑢 𝑢{𝑉 /𝑥} ⇓𝑛−1 𝜇
𝑡 𝑉 ⇓𝑛 𝜇 charge 𝑟 ⇓𝑛 𝛿 (𝑟,produce ( ) )

𝑡 ⇓𝑛 produce 𝑉 𝑢{𝑉 /𝑥} ⇓𝑛−1 𝜇
(𝑥 ← 𝑡);𝑢 ⇓𝑛 𝜇

𝑡{thunk fix𝑥 . 𝑡/𝑥} ⇓𝑛−1 𝜇
fix𝑥 . 𝑡 ⇓𝑛 𝜇

𝑡 ⇓𝑛 𝜇
ifZero 0 then 𝑡 else𝑢 ⇓𝑛 𝜇

𝑢 ⇓𝑛 𝜇
ifZero (𝑛 + 1) then 𝑡 else𝑢 ⇓𝑛 𝜇

𝑡{𝑉1,𝑉2/𝑥1, 𝑥2} ⇓𝑛−1 𝜇
let (𝑥1, 𝑥2) = (𝑉1,𝑉2) in 𝑡 ⇓𝑛 𝜇

𝑡 ⇓𝑛−1 𝜇
case nil of nil⇒ 𝑡 | cons𝑥 𝑥𝑠 ⇒ 𝑢 ⇓𝑛 𝜇

𝑢{𝑉1,𝑉2/𝑥, 𝑥𝑠} ⇓𝑛−1 𝜇
case (cons𝑉1𝑉2) of nil⇒ 𝑡 | cons𝑥 𝑥𝑠 ⇒ 𝑢 ⇓𝑛 𝜇

Fig. 5. Big-Step Operational Semantics

• A cost semantics that serves as a denotational baseline for compositionally computing the

cost distribution of probabilistic programs.

• An expected cost semantics that, while it cannot reason about as many quantitative prop-

erties of cost as the cost semantics, such as tail-bounds and higher-moments, it provides a

compositional account to the expected cost.
Both semantics will be defined over the category 𝜔Qbs of 𝜔-quasi Borel spaces [42], a Cartesian
closed category that admits a probabilistic powerdomain of subprobability distributions 𝑃≤1. By
using the writer monad transformer 𝑃≤1 (C × −), it can also accommodate cost operations, as we

explain in Section 3.1. With this monad it is possible to define the expected cost to be the expected

value of the cost distribution 𝑃≤1 (C).
Unfortunately, this approach is non-compositional. In order to compute the expected cost of a

program of type 𝐹𝜏 , we must first compute its (compositional) semantics which can then be used

to obtain a distribution over the cost and then apply the expectation formula to it. We work around

this issue by constructing a novel expected cost monad in Section 3.3 that makes the expected cost

a part of the semantics and, as such, it is compositionally computed. We start this section by going

over important definitions and constructions for 𝜔Qbs, we then define the cost semantics, followed

by the expected cost semantics.

3.1 𝜔-quasi Borel spaces
We now introduce the semantic machinery used in the interpretation of cert. Due to requirement

of higher-order functions, probability and unbounded recursion, we are somewhat limited in terms

of which semantic domain to use. We use the category of 𝜔-quasi Borel spaces, a domain-theoretic

version of quasi-Borel spaces [19].

Definition 3.1 ([42]). An𝜔-quasi Borel space is a triple (𝑋, ≤, 𝑀𝑋 ) such that, (𝑋, ≤) is a𝜔-complete

partial order (𝜔CPO), i.e. it is a partial order closed under suprema of ascending sequences, and

𝑀𝑋 ⊆ R→ 𝑋 is the set of random elements with the following properties:

• All constant functions are in𝑀𝑋
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• If 𝑓 : R→ R is a measurable function and 𝑝 ∈ 𝑀𝑋 , then 𝑝 ◦ 𝑓 ∈ 𝑀𝑋

• If R =
⋃

𝑛∈N𝑈𝑛 , where for every 𝑛, 𝑈𝑛 are pairwise-disjoint and Borel-measurable, and

𝛼𝑛 ∈ 𝑀𝑋 then the function 𝛼 (𝑥) = 𝛼𝑛 (𝑥) if, and only if, 𝑥 ∈ 𝑈𝑛 is also an element of𝑀𝑋 .

• For every ascending chain {𝑓𝑛}𝑛 ⊆ 𝑀𝑋 , i.e. for every 𝑥 ∈ R, 𝑓𝑛 (𝑥) ≤ 𝑓𝑛+1 (𝑥), the pointwise
supremum

⊔
𝑛 𝑓𝑛 is in𝑀𝑋 .

Note that, in the definition above, 𝜔CPOs do not assume the existence of a least element, e.g. for

every set 𝑋 , the discrete poset (𝑋,=) is an 𝜔CPO.

Definition 3.2. Ameasurable function between𝜔-quasi Borel spaces is a Scott continuous function

𝑓 : 𝑋 → 𝑌 — i.e. preserving suprema of ascending chains — such that for every 𝑝 ∈ 𝑀𝑋 , 𝑓 ◦𝑝 ∈ 𝑀𝑌 .

Definition 3.3. The category 𝜔Qbs has 𝜔-quasi Borel spaces as objects and measurable functions

as morphisms.

Theorem 3.4 (Section 3.3 of Vákár et al. [42]). The category 𝜔Qbs is Cartesian closed.

Furthermore, there is a full and faithful functor Sbs → 𝜔Qbs, where Sbs is the category of

standard Borel spaces and measurable functions (cf. Proposition 15 [19]). More concretely, if you

interpret a program that has as inputs and output standard Borel spaces, its denotation in 𝜔Qbs
will be a measurable function, even if the program uses higher-order functions, and any measurable

function could potentially be the denotation of the program.

Inductive types. As shown in previous work [42], 𝜔Qbs can also soundly accommodate full

recursive types. In particular, it can give semantics to lists over 𝐴 by solving the domain equation

list(𝐴) � 1 +𝐴 × list(𝐴).
It is convenient that in 𝜔Qbs, the set of lists over 𝐴 with appropriate random elements and

partial order is a solution to the domain equation and it is the smallest one, i.e. it is an initial algebra.

This means that when reasoning about lists expressed in cert, you may assume that they are just

the set of lists over sets.

Probability Monads. It is possible to construct probabilistic powerdomains in 𝜔Qbs, making

it possible to use this category as a semantic basis for languages with probabilistic primitives.

Furthermore, the 𝜔CPO structure can also be used to construct a partiality monad, making it

possible to give semantics to programs with unbounded recursion. We are assuming familiarity

with basic concepts from category theory such as monads and use the notation (𝑇, 𝜂𝑇 , (−)#
𝑇
), where

𝑇 is an endofunctor, 𝜂𝑇
𝐴

: 𝐴 → 𝑇𝐴 and (−)#
𝑇

: (𝐴 ⇒ 𝑇𝐵) → (𝑇𝐴 ⇒ 𝑇𝐵) are the unit and

bind natural transformations, respectively. The monad is said to be strong if there is a natural

transformation 𝑠𝑡𝐴,𝐵 : 𝐴×𝑇𝐵 → 𝑇 (𝐴×𝐵) making certain diagrams commute [33]. When it is clear

from the context, we will simply write 𝜂 and (−)#, without the sub and superscript, respectively.

Lemma 3.5 (Section 4.5 of Vákár et al. [42]). The category𝜔Qbs admits strong commutative monads
𝑃 and 𝑃≤1 of probability and sub-probability distributions, respectively.

Categorically, 𝑃≤1 is defined as a submonad of the continuation monad (− → [0, 1]) → [0, 1]
and its monad structure is similar to the one from probability monads in Meas, i.e. the unit at a
point 𝑎 : 𝐴 is given by the point mass distribution 𝛿𝑎 and 𝑓 # (𝜇) is given by integrating 𝑓 over the

input distribution 𝜇. A more detailed presentation of this construction will be given in Section 5.

Furthermore, by construction, 𝜔Qbs admits a morphism

∫
𝐴
: (𝑃≤1𝐴) × (𝐴 → {0, 1}) → [0, 1]

that maps a subprobability distribution and a “measurable set” of 𝐴 into its measure. For example,

if 𝐴 is a measurable space, for every measurable set 𝑋 : 𝐴→ {0, 1}, and for every subprobability

distribution 𝜇 : 𝑃≤1𝐴, the map (𝜇, 𝑋 ) ↦→ 𝜇 (𝑋 ) is an 𝜔Qbs morphism and is equal to

∫
𝐴
.
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12 Pedro H. Azevedo de Amorim

Jcharge 𝑐K𝐶𝑆 = 𝛿 (𝑐,( ) ) JuniformK𝐶𝑆 = 𝛿0 ⊗ 𝜆 Jfix𝑥 . 𝑡K𝐶𝑆 =
⊔
𝑛

J𝑡K𝑛𝐶𝑆 (⊥)

Fig. 6. Cost semantics of operations

The machinery we have defined so far is expressive enough to interpret cert, with exception

of its cost operations. In non-effectful languages, the writer monad (C × −) can be used to give

semantics to cost operations such as charge 𝑐 .

Definition 3.6. If (C, 0, +) is a monoid, then C×− is a monad — the writer monad — where the unit

at a point 𝑎 is (0, 𝑎) and given a morphism 𝑓 : 𝐴→ C × 𝐵, 𝑓 # (𝑐, 𝑎) = (𝑐 + (𝜋1 ◦ 𝑓 ) (𝑎), (𝜋2 ◦ 𝑓 ) (𝑎)),
where 𝜋𝑖 : 𝐴1 ×𝐴2 → 𝐴𝑖 is the 𝑖-th projection.

What follows is how to combine the non-probabilistic cost monad (C × −) with 𝑃≤1 in order to

define a probabilistic cost semantics.

3.2 A probabilistic cost semantics
Contrary to the deterministic case, the cost of a probabilistic computation is not a single value, but

rather a distribution over costs. For instance, consider the program:

· ⊢𝑐 (charge 1; produce 0) ⊕ (produce 2) : 𝐹N

It either returns 2 without costing anything, or it returns 0 with a cost of 1. Denotationally, this

program should be the distribution
1

2
(𝛿 (1,0) +𝛿 (0,2) ). With equal probability, the program will either

cost 1 and output 0 or cost 0 and output 2.

In the deterministic case, it is possible to encode the cost at the semantic-level by using the writer
monad C × −. For probabilistic cost-analysis we can use the writer monad transformer.

Lemma 3.7. If 𝑇 : C → C is a strong monad then 𝑇 (C × −) is a strong monad.

When instantiating 𝑇 to be the subprobability monad 𝑃≤1, we get a monad for probabilistic

cost, which justifies the denotation of the program (charge 1; produce 0) ⊕ (produce 2) being a

distribution of a pair of a cost and natural number.

By using the monadic semantics of CBPV, we get a cost-aware probabilistic semantics, where

most of its definitions follow the standard monadic CBPV semantics shown in Appendix A —

denoted as J·K𝑣𝐶𝑆 for values and J·K𝑐𝐶𝑆 for computations. The noteworthy interpretations are for the

effectful operations, whose semantics are depicted in Figure 6, and for the cost monoid, which is

interpreted as the additive natural numbers (N, 0, +).
With this semantics, we now define the expected cost of a distribution:

Definition 3.8. Let 𝜇 : 𝑃≤1 [0,∞], its expected value is E(𝜇) =
∫
[0,∞] 𝑥 d𝜇.

In the definition above we have chosen the most general domain for E, but for every measurable

subset 𝑋 ⊆ [0,∞] the expected distribution formula can be restricted to distributions over 𝑋 . In

particular, it is possible to restrict this function to have 𝑃≤1 (N) as its domain.

Example 3.9 (Geometric Distribution). This semantics makes it possible to reason about the

geometric distribution defined as the program
1 · ⊢ fix𝑥 .0 ⊕ (1 + 𝑥) : 𝐹N. It is possible to show that

this program indeed denotes the geometric distribution by unfolding the semantics and obtaining

1
For the sake of simplicity we have elided the some of the bureaucracy of CBPV, such as produce and force .
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Jcharge 𝑐K𝐸𝐶 = (𝑐, 𝛿 ( ) ) JuniformK𝐸𝐶 = (0, 𝜆) Jfix𝑥 . 𝑡K =
⊔
𝑛

J𝑡K𝑛𝐸𝐶 (⊥)

Fig. 7. Expected cost semantics of operations

the fixed point equation 𝜇 = 1

2
(𝛿0 + 𝑃≤1 (𝜆𝑥.1 + 𝑥) (𝜇)), for which the geometric distribution is a

solution.

Since we are interested in reasoning about the cost of programs, it is possible to reason about

the expected amount of coins flipped during its execution by adding the charge 1 operation as

follows fix𝑥 . charge
1
; (0 ⊕ (1 + 𝑥)) : 𝐹N, i.e. whenever a new coin is flipped, as modeled by the

⊕ operation, the cost increases by one. By construction, the cost distribution will also follow a

geometric distribution.

If we want to compute the actual expected value, we must compute

∑
𝑛:N

𝑛
2
𝑛 . This particular

infinite sum can be calculated by using a standard trick. In the next section we show how to encode

this trick in the semantics itself, significantly simplifying the computation of the expected value.

Theorem 3.10. (cf. Appendix A) For every computation 𝑡 and value𝑉 , J𝑡{𝑉 /𝑥}K𝐶𝑆 = J𝑡K𝐶𝑆 (J𝑉 K𝐶𝑆 ).

Theorem 3.11. (cf. Appendix A) For every computation context 𝐶 , if J𝑡K𝐶𝑆 = J𝑢K𝐶𝑆 then J𝐶 [𝑡]K𝐶𝑆 =

J𝐶 [𝑢]K𝐶𝑆 .

3.3 A semantics for expected cost
The semantics just proposed can compositionally compute the cost distribution of programs,

but compositionality is broken when computing its expected cost. Indeed, after computing the

distribution, we must compute the expected cost of an arbitrarily complex distribution. We fix this

by defining a novel expected cost monad.

We achieve this by defining a monad structure on the functor [0,∞] × 𝑃≤1: every computation

will be denoted by an extended positive real number, i.e. its expected cost, and a subprobability

distribution over its output. The monad’s unit at a point 𝑎 : 𝐴 is the pair (0, 𝛿𝑎) and the bind

operation (−)# adds the expected cost of the input with the average of the expected cost of the

output. Formally, given an 𝜔Qbs morphism 𝑓 : 𝑋 → [0,∞] × 𝑃≤1𝑌 , its Kleisli extension is the

function 𝑓 # (𝑟, 𝜇) = (𝑟 +
∫
(𝜋1 ◦ 𝑓 ) d𝜇, (𝜋2 ◦ 𝑓 )#𝑃≤1 (𝜇)).

Theorem 3.12. The triple ( [0,∞] × 𝑃≤1, 𝜂, (−)#) is a strong monad.

Proof. The proof can be found in Appendix F. □

With this monad it is possible to define a new semantics for cert that interprets the effectful
operations a bit differently from the cost semantics, as we depict in Figure 7, where J·K𝑐𝐸𝐶 is the

computation semantics while J·K𝑣𝐶𝑆 is the value semantics; the cost monoid is still interpreted as N.

Example 3.13 (Revisiting the geometric distribution). Unfolding the expected cost 𝜋1 ◦ JgeomK𝐸𝐶
gives us the fixed point equation 𝐸 = 1 + (1 − 1

2
)𝐸, i.e. 𝐸 = 2. This can be readily generalized to

arbitrary 𝑝 ∈ [0, 1], giving the equation 𝐸𝑝 = 1 + (1 − 𝑝)𝐸𝑝 .

As we have noted in the previous section, the cost semantics can be used to reason about the

expected cost by using Definition 3.8. Something which will play an important role in our soundness

proof is the fact that this definition interacts well with the monadic structure of 𝑃≤1.

Lemma 3.14. Let 𝜇 : 𝑃≤1𝐴 and 𝑓 : 𝐴→ 𝑃≤1 ( [0,∞]), E(𝑓 # (𝜇)) =
∫
𝐴
E(𝑓 (𝑎))𝜇 (d𝑎).
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14 Pedro H. Azevedo de Amorim

Proof. This can be proved by unfolding the definitions

𝐸 (𝑓 # (𝜇)) =
∫
[0,∞]

𝑥

(∫
𝐴

𝑓 (𝑎)𝜇 (d𝑎)
)
(d𝑥) =

∫
𝐴

∫
[0,∞]

𝑥 𝑓 (𝑎) (d𝑥)𝜇 (d𝑎) =
∫
𝐴

E(𝑓 (𝑎))𝜇 (d𝑎)

In the third equation we had to reorder the integrals, which is valid because 𝑃≤1 is commutative. □

With this lemma in mind, we state some basic definitions and lemmas that allows us to describe

precisely how the cost and expected cost semantics relate.

Definition 3.15. A monad morphism is a natural transformation 𝛾 : 𝑇 → 𝑆 , where (𝑇, 𝜂𝑇 , (−)#
𝑇
)

and (𝑆, 𝜂𝑆 , (−)#
𝑆
) are monads over the same category, such that 𝛾 ◦𝜂𝑇 = 𝜂𝑆 and (𝛾 ◦𝑔)#

𝑆
◦𝛾 = 𝛾 ◦𝑔#

𝑇
,

for every 𝑔 : 𝐴→ 𝑇𝐵.

Theorem 3.16. There is a monad morphism 𝐸 : 𝑃 (N × −) → [0,∞] × 𝑃 .

Proof. We define the morphism 𝐸𝐴 (𝜇) = (E(𝑃 (𝜋1) (𝜇)), 𝑃 (𝜋2) (𝜇)). The first monad morphism

equation follows by inspection and the second one follows mainly from Lemma 3.14, when restrict-

ing it to the probabilistic distributions, i.e. total mass equal to 1. □

Lemma 3.17. The natural transformation 𝐸, when extend to subprobability distributions, is not a
monad morphism.

Proof. Let
1

2
(𝛿 (0,1) + 𝛿 (1,2) ) be a distribution over C × N and 𝑓 (0) = 1

2
𝛿0, 𝑓 (𝑛 + 1) = 0 be a

subprobability kernel. It follows by inspection that ((𝐸◦ 𝑓 )#[0,∞]×𝑃≤1 ◦𝐸) (𝜇) ≠ (𝐸◦ 𝑓
#

𝑃≤1 (N×−) ) (𝜇) □

Theorem 3.16 says that the different cost semantics interact well in the probabilistic case. In the

subprobabilistic case this is not true, as illustrated by Lemma 3.17. This formalizes the intuitions

behind the subtleties in the interaction of expected cost and non-termination explained in the

previous section. This semantics also validates the following compositionality properties.

Theorem 3.18. (cf. Appendix A) For every computation 𝑡 and value𝑉 , J𝑡{𝑉 /𝑥}K𝐸𝐶 = J𝑡K𝐸𝐶 (J𝑉 K𝐸𝐶 ).

Theorem 3.19. (cf. Appendix A) For every context 𝐶 , if J𝑡K𝐸𝐶 = J𝑢K𝐸𝐶 then J𝐶 [𝑡]K𝐸𝐶 = J𝐶 [𝑢]K𝐸𝐶 .

4 SOUNDNESS THEOREMS
We have proposed four ways of reasoning about expected cost: by using the equational theory, the

operational semantics or by using either of the denotational semantics. Something which is not

clear at first is the extent of how much these semantics are reasoning about the same property. We

begin this section by proving soundness properties of the expected cost semantics with respect

to the denotational cost semantics by stating and proving a generalization of the effect simulation
problem [14]. Due to subtle interactions between cost, probability and non-termination, we provide

separate analyses for the probabilistic and subprobabilitic cases.

In order to justify that the denotational semantics is reasoning about an operational notion of

cost, we prove standard soundness and adequacy results of the denotational cost semantics with

respect to the operational cost semantics. We also show that both cost and expected cost semantics

are sound with respect to the equational theory.

4.1 Denotational Soundness
The soundness property we are interested in is the following: given a closed program · ⊢𝑐 𝑡 : 𝐹𝜏 ,
then the expected value for the second marginal of J𝑡K𝐶𝑆 is equal to 𝜋1 (J𝑡K𝐸𝐶 ). In the literature,

similar properties have been called the effect simulation problem and many semantic techniques

have been developed for solving it, such as ⊤⊤-lifting [25].
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Unfortunately, the available categorical techniques for effect simulation have two limitations.

The first one is that it only proves properties about programs with ground type context and output,

cf. Theorem 7 of Katsumata [25]. The second one is the lack of existence of an appropriate monad

morphism 𝛽 : 𝑃≤1 (N × −) → [0,∞] × 𝑃≤1. Since we are trying to relate the expected value of the

first marginal with the weight given by the expected cost monad, 𝛽 would have to be equal to 𝐸, as

defined above, which according to Lemma 3.17 is not a monad morphism.

We deal with both of these issues by defining a two-level logical relation. This structure mimics

the value/computation types distinction present in CBPV and, when compared to previous work

[25], gives stronger soundness properties. We begin by defining a probabilistic relational lifting in

𝜔Qbs.

Definition 4.1. Let R ⊆ 𝐴 × 𝐵 be a complete binary relation, i.e. it is closed under suprema of

ascending sequences, its lifting R# ⊆ 𝑃≤1 (𝐴) × 𝑃≤1 (𝐵) is defined as 𝜇 R# 𝜈 if there is a distribution

𝜃 : 𝑃≤1 (R) such that its first and second marginals are, respectively, 𝜇 and 𝜈 .

This definition interacts well with the monadic structure of 𝑃≤1. Concretely, it is stable with
respect to the unit and bind of 𝑃≤1. This definition can be restricted to the probability monad 𝑃 .

We now define our logical relations as two families of relations, one for value types and one for

computation types:

V𝜏 ⊆ J𝜏K𝑣𝐶𝑆 × J𝜏K𝑣𝐸𝐶 C𝜏 ⊆ J𝜏K𝑐𝐶𝑆 × J𝜏K𝑐𝐸𝐶
VN = {(𝑛, 𝑛) | 𝑛 ∈ N} C𝐹𝜏 = {((𝑟, 𝜈), 𝜇) | E(𝜇1) ≤ 𝑟 ∧ 𝜈V#

𝜏 𝜇2}
V𝑈𝜏 = C𝜏 C𝜏→𝜏 = {(𝑓1, 𝑓2) | ∀𝑥1, 𝑥2, 𝑥1V𝜏𝑥2 ⇒ 𝑓1 (𝑥1)C𝜏 𝑓2 (𝑥2)}
V𝜏1×𝜏2 = V𝜏1 ×V𝜏2

Vlist(𝜏 ) = list(V𝜏 )

Where list(V𝜏 ) relates two lists if, and only if, the lists have the same length and are component-

wise related byV𝜏 . As it is often the case, the “meat” of the logical relations is in the definition

of relation for the 𝐹 connective, where we specify the desired relationship between the expected

value of the cost distribution and the real number given by the expected cost semantics. We can

now state the fundamental theorem of logical relations. Its proof is detailed in Appendix B.

Theorem 4.2. For every Γ = 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛 , Γ ⊢𝑣 𝑉 : 𝜏 , Γ ⊢𝑐 𝑡 : 𝜏 and if for every 1 ≤ 𝑖 ≤ 𝑛,
· ⊢𝑣 𝑉𝑖 : 𝜏𝑖 and J𝑉𝑖K𝐶𝑆 V𝜏𝑖 J𝑉𝑖K𝐸𝐶 , then

r
let 𝑥𝑖 = 𝑉𝑖 in 𝑡

z𝑐

𝐶𝑆
C𝑐
𝜏

r
let 𝑥𝑖 = 𝑉𝑖 in 𝑡

z𝑐

𝐸𝐶
and

r
let 𝑥𝑖 = 𝑉𝑖 in 𝑉

z𝑣

𝐶𝑆
V𝜏

r
let 𝑥𝑖 = 𝑉𝑖 in 𝑉

z𝑣

𝐸𝐶
,

where the notation 𝑥𝑖 = 𝑉𝑖 means a list of 𝑛 let-bindings or, in the case of values, a list of substitutions.

The denotational soundness theorem now follows as a simple corollary.

Theorem 4.3. The expected-cost semantics is sound with respect to the cost semantics, i.e. for every
program · ⊢𝑐 𝑡 : 𝐹𝜏 , the expected cost of the second marginal of J𝑡K𝑐𝐶𝑆 is at most 𝜋1 (J𝑡K𝑐𝐸𝐶 ). Furthermore,
when restricted to the recursion-free fragment of cert, these costs are equal.

In order to prove the recursion-free fragment property above we must modify the C𝐹𝜏 definition
so that E(𝜇1) = 𝑟 . By propagating this change through the proof we get the desired result.
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4.2 Equational Soundness
In the previous section, we have argued that in the presence of unbounded recursion, the cost

semantics has some undesirable properties which are not present in the expected cost semantics.

That being said, when it comes to the base equational theory of Figure 4, both semantics are sound

with respect to it, showing that there is still some harmony between them.

Theorem 4.4. If Γ ⊢𝑐 𝑡 = 𝑢 : 𝜏 then J𝑡K𝑐𝐸𝐶 = J𝑢K𝑐𝐸𝐶 and J𝑡K𝑐𝐶𝑆 = J𝑢K𝑐𝐶𝑆 .

Proof. The proof follows by induction on the equality rules, where the inductive cases follow

directly from the inductive hypothesis while the base cases follow by inspection. For instance,

the equation charge 0; 𝑡 = 𝑡 is true because N is a monoid and 0 is its unit. Once again, the full

equational theory is shown in Figure 13 and the full proof can be found in Appendix F. □

It is useful to understand the extent of which these equational theories differ. For instance, the

cost semantics validates the equation ⊥; 𝑡 = ⊥ = 𝑡 ;⊥. This equation is too extreme for the purposes

of expected cost, since it says that charge 𝑐 ;⊥ = ⊥. An even more egregious equation that it satisfies

is fix𝑥 . charge 1;𝑥 = ⊥. That equation says that the cost of infinity is the same as no cost at all, as

long as the program does not terminate.

These equations are connected to the commutativity equation:

Γ ⊢𝑐 𝑥 : 𝐹𝜏1 Γ ⊢𝑐 𝑢 : 𝐹𝜏2 Γ, 𝑥 : 𝜏1, 𝑦 : 𝜏2 ⊢𝑐 𝑡 ′ : 𝜏
Γ ⊢𝑐 (𝑥 ← 𝑡 ;𝑦 ← 𝑢; 𝑡 ′) = (𝑦 ← 𝑢;𝑥 ← 𝑡 ; 𝑡 ′) : 𝜏

Theorem 4.5 (cf. Appendix F). The cost semantics validates the commutativity equation.

This equation is usually useful for reasoning about probabilistic programs. However, it is too

strong for the purposes of reasoning about expected cost. Indeed, consider the programs

𝑡 = ⊥; charge 𝑐; produce ()
𝑢 = charge 𝑐;⊥; produce ()

From an operational point of view, the first program will run a non-terminating program and never

reach the charge 𝑐 operation, while the second one increases the cost by 𝑐 and then diverges.

When it comes to modeling the cost of real programs, these two programs should not be the

same since, for instance, if the charge operation is modeling a monetary cost, such as a call to an

API, only the second program will cost something. Fortunately, the expected cost monad is not

commutative, making it a more physically-justified monad. When 𝑐 > 0, the terms 𝑡 and 𝑢 show:

Lemma 4.6. The monad [0,∞] × 𝑃≤1 is not commutative.

That being said, assuming that the program 𝑡 in the commutativity equation has no cost and

terminates with probability 1, the expected cost semantics validates the commutativity equation,

and maximally so.

Theorem 4.7. The commutativity equation is sound in the expected cost model if, and only if, 𝑡
terminates with probability 1 and has 0 expected cost.

Proof. In Appendix F, we prove this by showing that the probability monad 𝑃 is the center of

[0,∞] × 𝑃≤1 [7], a concept generalizing the center of monoids and algebraic theories [45]. □

4.3 Operational Soundness and Adequacy
We conclude this section by proving some metatheoretic properties of the operational semantics

and show how it relates to the denotational cost semantics. The main results of this section is the
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adequacy of the operational semantics with respect to the cost semantics and the cost adequacy

theorem of the operational semantics with respect to the expected cost semantics.

A consequence of Lemma 2.10 is that it becomes possible to compose the operational and

denotational semantics and obtain morphisms J⇓KΓ⊢𝜏 : ΛΓ⊢𝜏 → (JΓK𝐶𝑆 → J𝜏K𝐶𝑆 ), as explained in

Section 6.7 of Vákár et al. [42]. In particular, for closed programs, J⇓K·⊢𝜏 : Λ·⊢𝜏 → (J𝜏K𝐶𝑆 ). We now

state the soundness theorem.

Theorem 4.8 (Soundness). For every closed computation · ⊢𝑐 𝑡 : 𝜏 , J⇓(𝑡)K𝐶𝑆 ≤ J𝑡K𝐶𝑆 .

Proof. As usual, since the operational semantics is defined as the supremum of ⇓𝑛 , the proof
follows by induction on 𝑛 and 𝑡 . The proof can be found in Appendix C. □

The next step is proving the adequacy theorem. As it is usually the case, the proof follows from

a logical relations argument. For this relation, we will use a different, proof-irrelevant, relational

lifting which we now define.

Definition 4.9 (cf. Section 4.3.1 of Katsumata et al. [26]). If R ⊆ 𝐴×𝐵 is a binary relation, its lifting

R̃ ⊆ 𝑃≤1 (N ×𝐴) × 𝑃≤1 (N × 𝐵) is defined as 𝜇R̃𝜈 if, and only if, for every 𝑓 : N ×𝐴→ [0, 1] and
𝑔 : N×𝐵 → [0, 1] such that if 𝑎R𝑏 and 𝑔(𝑛,𝑏) ≤ 𝑓 (𝑛, 𝑎), for every 𝑛 : N, then

(∫
𝑔 d𝜈

)
≤

(∫
𝑓 d𝜇

)
.

We now show the definition of the adequacy logical relations.

▷𝜏 ⊆ V𝑎𝑙 ·⊢𝑣𝜏 × J𝜏K𝐶𝑆 �𝜏 ⊆ 𝑃≤1 (N ×𝑇 ·⊢𝑐𝜏 ) × J𝜏K𝐶𝑆
𝑛 ▷N 𝑛 ⇐⇒ ⊤ 𝜇 �𝐹𝜏 𝜈 ⇐⇒ 𝜇▷̃𝜏𝜈

𝑟 ▷R 𝑟 ⇐⇒ ⊤ 𝜇 �𝜏→𝜏 𝑓 ⇐⇒ (∀𝑎𝑉 ,𝑉 ▷𝜏 𝑎 ⇒
(𝜆𝑥 . 𝑡) ← 𝜇; ⇓(𝑡{𝑉 /𝑥}) �𝜏 𝑓 (𝑎))

() ▷1 () ⇐⇒ ⊤
𝑐 ▷C 𝑐 ⇐⇒ ⊤

(𝑉1,𝑉2) ▷𝜏1×𝜏2 (𝑥,𝑦) ⇐⇒ (𝑉1 ▷𝜏1 𝑥) ∧ (𝑉2 ▷𝜏2 𝑦)
𝑉 ▷list(𝜏 ) 𝑥 ⇐⇒ 𝑉 list(▷𝜏 ) 𝑥

(thunk 𝑡) ▷𝑈𝜏 𝑥 ⇐⇒ ⇓(𝑡) �𝜏 𝑥

The relation list(▷𝜏 ) holds if, and only if, both lists have the same length and are elementwise

related by ▷𝜏 .

Theorem 4.10 (Adequacy). For every closed computation · ⊢𝑐 𝑡 : 𝐹𝜏 , J𝑡K𝐶𝑆 ≤ J⇓(𝑡)K𝐶𝑆 .

Proof. The proof follows by showing a similar fundamental theorem of logical relations. The

detailed proof can be found in Appendix D. □

Corollary 4.11 (Cost Adequacy). For every closed computation · ⊢𝑐 𝑡 : 𝐹𝜏 , where 𝜏 is a ground type,

𝜋1 (J𝑡K𝐸𝐶 ) ≤ E(𝑃≤1 (𝜋1) (J⇓(𝑡)K𝐶𝑆 )

Proof. This theorem is a consequence of the adequacy theorem above and Theorem 4.3. □
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5 PRE-EXPECTATION SOUNDNESS
We conclude the technical development of the semantics by proving a canonicity property of the

expected cost monad with respect to the pre-expectation monad — frequently used for expected

cost analysis [2, 23]. The main theorem in this section shows that the expected cost monad is

the minimal submonad of the pre-expectaction monad that can accommodate cost and sampling

operations. This is important because it shows that any pre-expectation-based approach to expected

cost analysis has to necessarily be a conservative extension of the expected cost monad.

We begin by revisiting some basic concepts from pre-expectation semantics. Then, we go over

the categorical machinery used in our canonicity proof. As an application, we provide a more

robust and conceptual proof of Lemma 7.2 of Avanzini et al. [4], a key result in establishing the

soundness of their approach. We conclude this section by proving Theorem 5.12, the canonicity

property satisfied by the expected cost monad.

5.1 Pre-expectation semantics
Pre-expectations were originally proposed as a probabilistic generalization of predicate-transformer

semantics [28] and are an important tool used in the semantic analysis of probabilistic programs.

They are defined as an element of the space (𝑋 → [0,∞]) → [0,∞], for some 𝑋 .

Pre-expectations are quite familiar in the functional programming world, being an instance of

continuation monads 𝐾𝐴 = (− → 𝐴) → 𝐴, with 𝐴 = [0,∞]. These monads are quite flexible in

terms of which effects they can accommodate. Indeed, by choosing appropriate response types

𝐴, one can encode every monadic effect. For example, previous work [4, 23] has noted that pre-

expectations can be used can accommodate charge𝑛 and sampling operations 𝑡 ⊕𝑝 𝑢 as the pre-

expectations 𝜆𝑓 . 𝑛 + 𝑓 ∗ and 𝜆𝑓 . 𝑝 ∗ (𝑡 𝑓 ) + (1 − 𝑝) ∗ (𝑢 𝑓 ), respectively. In Avanzini et al. [4], such

interpretations define a pre-expectation transformer ect that maps costful probabilistic programs

to their pre-expectation semantics.

However, the flexibility afforded by using continuation monads comes at a cost. One of the goals

of denotational semantics is using mathematical structures that are abstract enough to enable

high-level mathematical reasoning, while reflecting useful programming invariants at the semantic

level. Continuation semantics go against this tenet, as they lose structures and invariants of “tailor

made” semantics, making them not completely adequate for reasoning about programs.

In the context of pre-expectation reasoning, as we saw in Section 4.2, there are useful equations

such as commutativity or variants thereof that are validated by the expected cost monad. On the

other hand, continuation monads are notoriously non-commutative [7].

Another example of such a denotational inadequacy can be seen in Avanzini et al. [4]. The

soundness of their cost analysis hinges on proving that the function ect mentioned above can

be factored as the sum of a positive real number and an integral. In contrast, this property holds

unconditionally in the expected cost semantics, making it more robust when it comes to language

extensions.

Lastly, the pre-expectation semantics has no a priori connection to probability theory, making it

harder to apply theorems from probability theory when reasoning about programs. This limitation

will become clear in Section 6, where we reason about a stochastic convex hull algorithm by using

known theorems from probability theory.

5.2 Factoring monad morphisms
Factorization systems capture classes of morphisms that can uniquely factor any morphism. The

most familiar example is that of injections and surjections, where every function can be uniquely
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factored as the composition of a surjection followed by an injection. However, in order to properly

generalize this idea, one needs to be a bit more careful:

Definition 5.1 (e.g. Section 5.5.1 of Borceux [6]). A (orthogonal) factorization system over a

category C is a pair (E,M), where both E andM are classes of morphisms of C such that

• Every isomorphism belongs to both E andM
• Both classes are closed under composition

• For every 𝑒 : E,𝑚 :M and morphisms 𝑓 and 𝑔 such that the appropriate diagram commutes,

there is a unique ℎ making the following diagram commute:

𝐴 𝐵

𝐶 𝐷

𝑓

𝑒 ℎ 𝑚

𝑔

• Every morphism 𝑓 in C can be factored as 𝑓 =𝑚 ◦ 𝑒 , where𝑚 :M and 𝑒 : E.

Note that under these axioms, the factorization is guaranteed to be unique up to isomorphism. If

every morphism inM is monic, then the factorization system is said to be epi-mono.

Example 5.2. As mentioned above, in the category Set, the pair ({𝑓 | 𝑓 is surjective}, {𝑓 |
𝑓 is injective}) is a factorization system. Given a function 𝑓 : 𝐴 → 𝐵, its factorization is 𝐴 →
𝑓 (𝐴) → 𝐵, where 𝑓 (𝐴) is the image of 𝑓 and the function 𝑓 (𝐴) → 𝐵 is the set inclusion.

Example 5.3 (Example 2.3 of Kammar and McDermott [24]). In the category CPO, the pair

({𝑓 | 𝑓 has dense image}, {𝑓 | 𝑓 is order-reflecting}) is a factorization system.

A natural extension of the factorization system above can be defined for the category 𝜔Qbs by
requiring the elements of E to be the densely strong epic morphisms [42]. A morphism 𝑓 : 𝑋 → 𝑌

in 𝜔Qbs is densely strong epic if it maps elements in 𝑀𝑋 into a Scott dense subset of 𝑀𝑌 with

respect to the pointwise order. We now recall some definitions and a theorem proved by Kammar

and McDermott [24] that play important role in how the probability monad in 𝜔Qbs is defined.

Definition 5.4. A monad structure is an endofunctor 𝑆 equipped with the monad natural transfor-

mations 𝜂 and (−)# but without the necessity of satisfying the monad laws.

Definition 5.5. A monad structure morphism between monad structures 𝑆1 and 𝑆2 over the same

categories is a natural transformation 𝑆1 → 𝑆2 such that the monad morphism laws hold.

Theorem 5.6 (Theorem 2.5 of Kammar and McDermott [24]
2
). Let (E,M) be an epi-mono fac-

torization structure, 𝑆 a monad structure, 𝑇 a monad and 𝛾 : 𝑆 → 𝑇 a monad structure morphism.
If the factorization system is closed under 𝑆 then 𝛾 can be factored as 𝑆 → 𝑀 → 𝑇 , where 𝑀 is a
monad, both morphisms are monad structure morphisms and each component of these morphisms is
an element of E andM.

This theorem was used by Vákár et al. [42] when defining their statistical powerdomain as

the factor of a monad morphism into the pre-expectation monad 𝐾[0,∞] . Intuitively, the monad

structures we are interested in are those where the monad laws hold up to an equivalence relation

and the factored monads are, roughly, the quotiented monad structures and satisfy a minimality

universal property given by the uniqueness of factorizations.

2
The proof is explained right after Theorem 2.6.
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5.3 Expected cost monad canonicity
We conclude this section by showing that the expected cost monad is the minimal submonad of

𝐾[0,∞] that can accommodate cost and subprobability distributions. We extend the analysis done

by Vákár et al. [42] on using Theorem 5.6 to define and prove the minimality of their statistical

powerdomain. We now review its construction and then apply it to our semantics.

The “random elements” functor [0, 1] → −⊥, where (−)⊥ is the partiality monad, can be equipped

with a monad structure similar to, but distinct from, the reader monad, as explained in Section 4.2

of [42]. The subprobability monad in 𝜔Qbs is then defined using the following lemma:

Lemma 5.7. There is a monad structure morphism ( [0, 1] → −⊥) → 𝐾[0,1] .

Proof. The proof is nearly identical to Section 4.2 of Vákár et al. [42], with the exception that

they are using a different, but analog, monad structure. □

The subprobability monad 𝑃≤1 is defined as the factorization of the monad structure morphism

above as ( [0, 1] → −⊥)
𝜓
−→→ 𝑃≤1 ↩→ 𝐾[0,1] . The component of the natural transformation above

maps a pair (𝑓 : [0, 1] → 𝐴⊥, 𝑔 : 𝐴 → [0, 1]) to
∫
dom(𝑓 ) (𝑔 ◦ 𝑓 ) dU, where U is the Lebesgue

uniform measure on [0, 1] and dom(𝑓 ) is the domain of 𝑓 .

We can also prove a similar lemma for the expected cost measure monad.

Lemma 5.8. There is a monad structure on the functor [0,∞] × ([0, 1] → −⊥) and a monad structure
morphism 𝛾 : [0,∞] × ([0, 1] → −⊥) → 𝐾[0,∞] .

Proof. There are similarities between the expected cost monad and the monad structure which

is given by 𝜂 (𝑎) = (0, 𝜆𝑟 . 𝑎) and 𝑓 # (𝑟, 𝑔) =
(
𝑟 +

∫
dom(𝑔) (𝜋1 ◦ 𝑓 ◦ 𝑔) dU, (𝜋2 ◦ 𝑓 )

#

[0,1]→−⊥ (𝑔)
)
. The

components of the monad structure morphism are defined as 𝛾𝐴 (𝑟, 𝑓 ) = 𝜆𝑘 . 𝑟 +
∫
(𝑘 ◦ 𝑓 ) dU. The

proof that this is indeed a monad morphism follows by unfolding the definitions and Lemma 5.7. □

By Theorem 5.6, and the fact that the factorization system in 𝜔Qbs is stable under products, the
monad structure morphism 𝛾 above can be factored as [0,∞] × ([0, 1] → −⊥) → 𝑀 → 𝐾[0,∞] .

We now show the sense in which [0,∞] × 𝑃≤1 is canonical.

Theorem 5.9 (cf. Appendix F). The factor𝑀 is isomorphic to the monad [0,∞] × 𝑃≤1.

The canonicity of the expected cost monad is given by it being the smallest submonad of the

continuation monad that can accommodate expected cost and subprobability distributions. A

consequence of this fact is the following:

Corollary 5.10. There is a monad morphism 𝜑 : [0,∞] × 𝑃≤1 → 𝐾[0,∞] which is component-wise
order-reflecting.

Intuitively, while the (sub)probability monad corresponds to the linear continuation monad, the

expected cost monad corresponds to the affine continuation monad. An application of the results

of this section is that it is possible to recover a purely denotational proof of Lemma 7.1 of Avanzini

et al. [4] that is more robust with respect to language extensions.

Theorem 5.11 (cf. Theorem 7 of Katsumata [25]). Let J·K𝑝𝑟𝑒 be the monadic semantics of CBPV for
the pre-expectation monad 𝐾[0,∞] . For every program · ⊢𝑐 𝑡 : 𝐹R, J𝑡K𝑝𝑟𝑒 = 𝜑 (J𝑡K𝐸𝐶 ). More explicitly,
the pre-expectation semantics can be factored as J𝑡K𝑝𝑟𝑒 (𝑓 ) = 𝜋1 (J𝑡K𝐸𝐶 ) +

∫
𝑓 d(𝜋2 (J𝑡K𝐸𝐶 ))

Furthermore, by using the fact that the monad morphism is order-reflecting and, therefore, an

injection, we can also prove, for ground type closed computations 𝑡1 and 𝑡2, if J𝑡1K𝑝𝑟𝑒 = J𝑡2K𝑝𝑟𝑒 ,
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ET = fix 𝑓 : N→ 𝐹1. 𝜆𝑛 : N.

if 𝑛 then

produce ()
else

(force 𝑓 ) (𝑛 − 1);
charge 1;

(produce () ⊕ (force 𝑓 ) 𝑛)

JETK𝐸𝐶 =
⊔
𝑛

𝐹𝑛 (⊥), where

𝐹 = 𝜆⟨𝑇1,𝑇2⟩. 𝜆𝑛.
if 𝑛 then

(0, 𝛿 ( ) )
else

(𝐸1, 𝐸2)

𝐸1 = 𝑇1 (𝑛 − 1)+ | 𝑇2 (𝑛 − 1) | (1 +
1

2

𝑇1 (𝑛))

𝐸2 =
| 𝑇2 (𝑛 − 1) |

2

(𝛿 ( ) +𝑇2 (𝑛))

Fig. 8. Expected coin tosses and its expected cost semantics.

then J𝑡1K𝐸𝐶 = J𝑡2K𝐸𝐶 . However, for non-ground types, this result is false. For instance, the weak

commutativity equation of Theorem 4.7 is not validated by the continuation monad (cf. Example 5.11

of Carette et al. [7]).

We conclude by showing that the expected cost monad is the minimal cost submonad of 𝐾[0,∞]
such that it supports the operations charge and uniform.

Theorem 5.12 (cf. Appendix F). For every monad 𝑇 with a componentwise monic monad morphism
𝛾 : 𝑇 → 𝐾[0,∞] and with the operations charge and uniform in its image, there is a unique monad
morphism [0,∞] × 𝑃≤1 ↩→ 𝑇 that factors the monad morphism [0,∞] × 𝑃≤1 → 𝐾[0,∞] through 𝛾 .

sketch. We start by generating the free monad 𝜔Qbs on operations charge : N → 𝐹1 and

uniform : 𝐹R. Similarly to Lemma 4.4 by Vàkàr et al. [42], we then show that the unique monad

morphism preserving charge and uniform between 𝐹 and [0,∞] × 𝑃≤1 is component-wise densely

strong epic. It then follows by the universal property of orthogonal factorization systems that for

every other submonad of 𝐾[0,∞] there is a canonical monad morphism [0,∞] × 𝑃≤1 → 𝐾[0,∞] . □

6 EXAMPLES
In this section we will show how the expected cost semantics can be used to reason about the

expected cost of probabilistic programs. We present randomized algorithms and recursive stochastic

processes, illustrating the versatility of cert. Due to space constraints, other examples and a more

detailed analysis of these examples can be found in Appendix E.

6.1 Expected coin tosses
A classic problem in basic probability theory is computing the expected number of coin flips

necessary in order to obtain 𝑛 heads in a row. We can model this stochastic process as probabilistic

program in Figure 8, where its expected cost semantics is also written down.

For every 𝑛, the program above simulates the probabilistic structure of flipping coins until

obtaining 𝑛 heads in a row. When its input is 0, it outputs () without flipping any coins. If the input

is greater than 0, in order to flip 𝑛 heads in a row it must first flip 𝑛 − 1 heads in a row — hence

the call to 𝑓 (𝑛 − 1) — flip a new coin while increasing the current counter by 1 and, if it is heads,

you have obtained 𝑛 heads in a row and may output (), otherwise you must recursively start the

process again from 𝑛: the left and right branches of ⊕, respectively.
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fix 𝑓 : list(𝜏) → 𝐹 (list(𝜏)).
𝜆𝑙 : list(𝜏).
𝜆𝑝𝑟𝑒𝑑 : 𝜏 × 𝜏 → 𝐹N.

case 𝑙 of

| nil⇒
produce nil

| (hd, tl) ⇒
𝑙𝑒𝑛 ← 𝑙𝑒𝑛𝑔𝑡ℎ 𝑙

𝑟 ← rand 𝑙𝑒𝑛

(𝑝𝑖𝑣𝑜𝑡, 𝑙 ′) ← nthDrop 𝑟 𝑙

(𝑙1, 𝑙2) ← 𝑏𝑖𝐹𝑖𝑙𝑡𝑒𝑟 𝑝𝑟𝑒𝑑 𝑙 ′

𝑙𝑒𝑠𝑠 ← force 𝑓 𝑙1
𝑔𝑟𝑒𝑎𝑡𝑒𝑟 ← force 𝑓 𝑙2
produce (𝑙𝑒𝑠𝑠 ++ 𝑝𝑖𝑣𝑜𝑡 :: 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 )

(a) Randomized parametric quicksort

𝑞𝑐𝑘N = fix 𝑓 : N→ 𝐹N. 𝜆𝑛 : N.

if 𝑛 then

produce 0

else

charge (𝑛 − 1)
𝑥 ← rand𝑛

(force 𝑓 ) 𝑥
(force 𝑓 ) (𝑛 − 𝑥 − 1)
produce 𝑛

(a) Natural number quicksort

Fig. 10. Quicksort algorithms

The denotational semantics of this program is also shown in Figure 8. We use the notation ⟨𝑇1,𝑇2⟩
to denote the pairing of functions 𝑇1 : N→ [0,∞] and 𝑇2 : N→ 𝑃≤1 (1). The cost component of

the denotation adds the cost of running the program with 𝑛 − 1 as input, while its distribution
part must multiply the continuation, which costs 1 for the charge operation plus

1

2
𝑇1 (𝑛), for the

recursive call. The distribution part 𝑇2 is the usual probabilistic semantics. Before we reason about

the cost of this program, we must show that it terminates with probability 1.

Lemma 6.1. For every 𝑛 : N, 𝜋2 ◦ J𝐸𝑇 K𝐸𝐶 (𝑛) = 𝛿 ( ) , i.e. it terminates with probability 1.

Proof. The proof follows by induction on 𝑛. When 𝑛 = 0, J𝐸𝑇 K𝐸𝐶 (0) = (0, 𝛿 ( ) ). For the inductive
case, assume 𝑛 > 0. Unfolding the recursive definition gives us

(𝜋2 ◦ J𝐸𝑇 K𝐸𝐶 (𝑛 + 1)) =
| J𝐸𝑇 K𝐸𝐶 (𝑛) |

2

(𝛿 ( ) + (𝜋2 ◦ J𝐸𝑇 K𝐸𝐶 (𝑛 + 1)),

by the induction hypothesis | J𝐸𝑇 K𝐸𝐶 (𝑛) | = 1, which gives us that 𝜋2 ◦ J𝐸𝑇 K𝐸𝐶 (𝑛 + 1) = 𝛿 ( ) . □

By unfolding the semantics and using the lemma above, we get the following recurrence relation:

𝑇1 (0) = 0

𝑇1 (𝑛 + 1) = 1 +𝑇1 (𝑛) +
1

2

𝑇1 (𝑛 + 1)

Which, by inspection, has the closed-form solution 𝑇1 (𝑛) = 2(2𝑛 − 1).

6.2 RandomizedQuicksort
In Figure 10 we present a program that implements a randomized quicksort parametric on a total

order on the type 𝜏 . For the purposes of this analysis, we assume that the input list only has distinct

elements.
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If we simply interpret the expected cost of this program denotationally, it will be a function

mapping lists to real numbers. This is not how such an analysis is done in practice, where the cost

is given as a function mapping list lengths to cost.

In our semantics, the denotation of the program is hiding the fact that its cost only depends on the

length of its argument.Wemake this precise by defining ameasurable function𝑞𝑐𝑘N : N→ R×𝑃≤1N
using the program in Figure 14 that corresponds to the quicksort structure assuming that the input

is a natural number.

Lemma 6.2 (cf. Appendix F). Assuming that 𝑝 : 𝜏 × 𝜏 → 𝐹N is a total order and the the input list
has no repetitions, the following program equation holds.

𝑛 ← length 𝑙

qckN 𝑛
=

𝑙 ′ ← quicksort (charge 1;𝑝) 𝑙
length 𝑙 ′

We now conclude our analysis by using the program equation above and the following lemma

which is proved by induction on 𝑛.

Lemma 6.3. For every 𝑛 : N, (𝜋2 ◦ qckN) (𝑛) = 𝛿𝑛 , i.e. it terminates with probability 1.

By unfolding the definition of 𝜋1 ◦ J𝑞𝑐𝑘NK𝐸𝐶 , we obtain the following expression fix (𝑓 ↦→ 𝑛 ↦→
ifZero𝑛 then 0 else (𝑛−1) +∑𝑖

1

𝑛
(𝑓 (𝑖) + 𝑓 (𝑛− 𝑖))) which can be further simplified to the recurrence

relation:

𝑇 (0) = 0

𝑇 (𝑛) = 𝑛 − 1 + 2

𝑛

𝑖−1∑︁
𝑖=0

𝑇 (𝑖)

This allows us to conclude that quickSort has an expected cost of𝑂 (𝑛 log(𝑛)), which can be proved

by induction and using the observation that for monotonic functions 𝑓 ,
∑𝑛−1

𝑖=1 𝑓 (𝑖) ≤
∫ 𝑛

1
𝑓 (𝑥) d𝑥 .

6.3 Stochastic Convex Hull
We conclude this section by going over a stochastic convex hull algorithm [15]. To the best of

our knowledge, this example is outside of reach of other logic/PL approaches to expected cost

analysis, due to its combination of continuous distributions, modular cost-probability interaction

and non-trivial probabilistic reasoning. This stochastic variant of the algorithm has linear expected

cost analysis.

In Figure 11 we go over the implementation of this algorithm in cert. Its main body convexHull
has three components. First, a list of points is sampled independently and uniformly from the square

[0, 1]2, then a preprocessing stage sieve removes points that “obviously” are not in the convex hull

and then we call the traditional Graham scan algorithm — cf. Section 3.3.2 of Preparata and Shamos

[38]. The output of convexHull n is the convex hull of a set of 𝑛 points uniformly distributed in the

[0, 1]2 square. Since in this example we are only interested in reasoning about its expected cost, we

will not reason about its functional correctness.

For the sake of presentation, we make a few simplifying assumptions: we assume that there is

an operation iQ that checks to see if a point is inside a given convex quadrilateral and we assume

that there is an operation clockOrNot𝑝1 𝑝2 𝑝3 that checks whether the lines 𝑝1𝑝2 and 𝑝2𝑝3 turn
counterclockwise or not. Finally, we assume the existence of a parametric binary total order relation

⊑: R2 → R2 → R2 → 𝐹N such that ⊑ 𝑝 orders two points comparing their angle between the

x-axis and their respective straight line with 𝑝 at the origin.

Theorem 6.4. (cf. Appendix E) The stochastic convex hull algorithm has linear expected run time.
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unifList = fix 𝑓 .𝜆𝑛.

ifZero𝑛 then

produce nil

else

𝑙 ← unifList (𝑛 − 1)
𝑥 ← uniform

𝑦 ← uniform

produce (cons (𝑥,𝑦) 𝑙)

sieve = 𝜆𝑙 .

𝑝1 ← min(𝜆(𝑥,𝑦) . 𝑥 + 𝑦) 𝑙
𝑝2 ← min(𝜆(𝑥,𝑦) . 𝑥 − 𝑦) 𝑙
𝑝3 ← min(𝜆(𝑥,𝑦) . − 𝑥 + 𝑦) 𝑙
𝑝4 ← min(𝜆(𝑥,𝑦) . − 𝑥 − 𝑦) 𝑙
filter (charge 1; iQ 𝑝1 𝑝2 𝑝3 𝑝4) 𝑙

scan = fix 𝑓 𝜆𝑙 . 𝜆𝑠𝑡𝑘.

charge 1

case (𝑙, 𝑠𝑡𝑘) of
| nil, _⇒ produce 𝑠𝑡𝑘

| (𝑥 :: 𝑥𝑠), nil⇒ 𝑓 𝑥𝑠 [𝑥]
| (𝑥 :: 𝑥𝑠), [𝑝] ⇒ 𝑓 𝑥𝑠 [𝑥, 𝑝]
| (𝑥 :: 𝑥𝑠), (𝑝1 :: 𝑝2 :: 𝑝𝑠) ⇒
if clockOrNot𝑝2 𝑝1 𝑥 then

𝑓 (𝑥 :: 𝑥𝑠) (𝑝2 :: 𝑝𝑠)
else

𝑓 𝑥𝑠 (𝑥 :: 𝑠𝑡𝑘)

graham = 𝜆𝑙 .

𝑝 ← min_xy 𝑙

𝑙 ′ ← quicksort (charge 1;⊑ 𝑝)𝑙
scan 𝑙 ′ nil

convexHull = 𝜆𝑛.

𝑙 ← unifList𝑛

𝑙 ′ ← sieve 𝑙

graham 𝑙 ′

Fig. 11. Stochastic convex hull algorithm

7 RELATEDWORK
Type Theories for Cost Analysis. Recent work [17, 36] have developed (in)equational theories for

reasoning about costs of programs inside a modal dependently-typed CBPV metalanguage. Their

framework can reason about monadic effects by using the writer monad transformer, similarly to

cert’s cost semantics, but, due to not being able to having access to fixpoint operators, it can only

represent total programs and finitely supported distributions— i.e. it cannot represent the geometric

distribution. Furthermore, it is unclear how one would go about extending their framework with

continuous distributions.

Other work has focused in designing type theories for doing relational reasoning of programs

[9, 40]. Even though these approaches can reason about functional programs as well, they are

limited to deterministic programs.

In work by Avanzini et al. [3], the authors define a graded, substructural type system for reasoning

about expected cost of functional programs, even using a randomized quicksort as an example.

One of the main limitations of their system with respect to cert is that, due to the substructural

invariants of their type system, it can only type check a limited subset of the programs that cert
can. For instance, it cannot type check common functional idioms like fold and map functions over

lists. Furthermore, they have not addressed how feasible type checking in their system is or if it is

even decidable, which in the context of type-based reasoning is an important property to have.

In other work by Avanzini et al. [2], the authors describe a continuation passing style (CPS)

transformation into a metalanguage for reasoning about expected cost of programs. Compared to

cert, both metalanguages can handle functional programming, though their language is restricted to

a CBV semantics and does not validate useful program equations, such as Theorem 4.7. Furthermore,

using continuation-passing style to reason about programs creates undesired gaps between the

transformed and original programs which are avoided when using the expected cost monad’s
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direct-style reasoning. Recent work by Rajani et al. [39] uses a Kripke-style semantics for reasoning

about expected cost and, as such, has looser connections to probability theory.

Automatic Resource Analysis. One fruitful research direction has been the automatic amortized

resource analysis (AARA) [20, 21, 35] which uses a type system to annotate programs with their

cost and automatically infer the cost of the program. These techniques have been extended to

reason about recursive types [18], probabilistic programs [43] and programs with local state [32].

Something quite appealing about their approach is that it is completely automatic, whereas our

approach requires solving a, possibly hard, recurrence relation by hand. That being said, their

system can only accommodate polynomial bounds, meaning that they cannot infer the 𝑛 log(𝑛)
bound for the probabilistic quicksort like we do. Recently, AARA has been extended to accommodate

exponential bounds [22] in deterministic programs, though it is still unclear if the same technique

can be extended to the probabilistic setting, meaning that they cannot analyze the behaviour of

exponentially slow programs such as the expected coin tosses one.

There have been other type-based approach to automatically reasoning about cost of programs,

such as the language TiML [44]. This language allows users to annotate type signatures with cost-

bounds and the type checking algorithm will infer and check these bounds. The main limitation

of TiML in comparison to our work is that it cannot handle probabilistic programs. There has

also been work done on automated reasoning about cost for first-order probabilistic programs by

Avanzini et al. [4]. The main limitation of this work when compared to cert is that it can only

handle first-order imperative programs.

Recurrence for Expected Cost. There has been some work done in exploring languages for ex-

pressing recurrence relations for expected cost. For example, Sun et al. [41] provides a language for

representing probabilistic recurrence relations and a tool for analyzing their tail-bounds. The main

drawback of these approaches is that the languages are not very expressive. In particular they do

not have higher-order functions.

Leutgeb el al. [30] define a first-order probabilistic functional language for manipulating data

structures and automatically infer bounds on the expected cost of programs. The main limitation

of their approach compared to ours is that their language is first-order.

Reasoning about expected cost has also been explored for imperative languages. For instance,

Batz et al. [5] develop a weakest pre-condition calculus for reasoning about the expected cost of

programs. Again, they can only reason about first-order imperative programs.

8 CONCLUSION
In this work we have presented cert, a metalanguage for reasoning about expected cost of recursive

probabilistic programs. It extends the existing work of [27] to the probabilistic setting. We have

proposed two different semantics, one based on the writer monad transformer while the second one

uses a novel expected cost monad. Furthermore, we have showed that in the absence of unbounded

recursion, these two semantics coincide, while when programming with subprobability distributions

we have proved that the expected cost semantics is an upper bound to the cost semantics.

We have justified the versatility of our expected cost semantics by presenting a few case-studies.

In particular, the expected cost semantics obtains, compositionally, the familiar recurrence cost

relations for non-trivial programs. In particular, for the randomized quicksort algorithm, the

semantic recurrence relation recovers the 𝑂 (𝑛 log𝑛) bound.
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A MONADIC SEMANTICS OF CBPV
Let C be a Cartesian closed category and 𝑇 : C → C a strong monad over it. An alternative

definition of monads is it being a triple (𝑇, 𝜂, 𝜇), where 𝑇 and 𝜂 are natural transformations as

before, but 𝜇 : 𝑇 2 → 𝑇 , the multiplication, replaces the bind natural transformation. The monad

laws under this definition become:

𝑇 3 𝑇 2 𝑇 𝑇 2 𝑇

𝑇 2 𝑇 𝑇

1

𝑇𝜂

𝜇
1

𝜂𝑇

𝜇𝑇

𝜇

𝜇

𝑇 𝜇

It is possible to show that these definitions are equivalent: given bind (−)#, the multiplication can

be defined as 𝜇 = 𝑖𝑑#
𝑇𝐴

. Conversely, given a multiplication, the bind is defined as 𝑓 # = 𝑇 𝑓 ; 𝜇. This

alternative definition is a bit better suited for the original purposes of monads, where it was used

as a unifying way of representing concepts from universal algebra.

This alternative presentation lend itself quite well to the semantics of CBPV-based calculi where,

given a monad 𝑇 , computation types denote 𝑇 -algebras:

Definition A.1. A𝑇 -algebra is a pair (𝐴, 𝛼), where 𝐴 is a C object and 𝛼 : 𝑇𝐴→ 𝐴 is a morphism,

such that

𝐴 𝑇𝐴 𝑇 2𝐴 𝑇𝐴

𝐴 𝑇𝐴 𝐴

𝜂𝐴

𝛼
𝑖𝑑𝐴

𝑇𝛼

𝛼

𝜇𝐴

𝛼

Given a 𝑇 -algebra (𝐴, 𝛼) we denote by 𝐴• the object of the 𝑇 -algebra.

Example A.2. Given an object𝐴, the pair (𝑇𝐴, 𝜇𝐴) is a𝑇 -algebra, where the algebra axioms follow

from the monad laws.

Example A.3. Given a 𝑇 -algebra (𝐴, 𝛼) and an object 𝐵, we can equip 𝐵 → 𝐴 with the 𝑇 -algebra

structure 𝛼𝐵→𝐴 = 𝜀𝐵 ⇒ (𝑠𝑡 ;𝑇 (𝑒𝑣 ;𝛼)), where 𝜀𝐴 : 𝐴→ (𝐵 ⇒ (𝐵 ×𝐴)) is the unit of the Cartesian
closed adjunction. This can be seen as a pointwise algebra structure.

Algebras and their morphisms can be organized as a category, frequently denoted by C𝑇 . However,
for the purposes of CBPV a different category is used:

Definition A.4. The category C̃𝑇 is the full subcategory of C that contain 𝑇 -algebras as objects.

This category is also called the category of algebras and plain maps.

The idea is that values are interpreted as objects in C while computation types are 𝑇 -algebras.

Assuming the only the base type in the calculus to be N and an object N in the base category, The

interpretation of values and computations are as follows:

JNK𝑣 = N

J𝑈𝜏K𝑣 = J𝜏K𝑐•
J𝜏1 × 𝜏2K𝑣 = J𝜏1K𝑣 × J𝜏2K𝑣

J𝐹𝜏K𝑐 = (𝑇 J𝜏K𝑣 , 𝜇J𝜏K𝑣 )
J𝜏 → 𝜏K𝑐 = (J𝜏K𝑣 ⇒ J𝜏K𝑐 , 𝛼J𝜏K𝑣→J𝜏K𝑐 )
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var

Γ1 × (𝜏 × Γ2)
!×𝜋1−−−→ 𝜏

if

Γ
𝑉−→ N Γ

𝑡−→ 𝜏 Γ
𝑢−→ 𝜏

Γ
⟨𝑖𝑑 ;𝑉 ⟩;[𝑡,(!;𝑢 ) ]
−−−−−−−−−−−→ 𝜏

abstraction

Γ × 𝜏 𝑡−→ 𝜏

Γ
ΛΓ ;𝜏⇒𝑡−−−−−−→ 𝜏 ⇒ 𝜏

application

Γ
𝑉−→ 𝜏 Γ

𝑡−→: 𝜏 → 𝜏

Γ
⟨𝑡,𝑉 ⟩;𝑒𝑣
−−−−−−→: 𝜏

produce

Γ
𝑉−→ 𝜏

Γ
𝑉 ;𝜂𝜏−−−→ 𝑇𝜏

seqencing

Γ
𝑡−→ 𝑇𝜏 ′ Γ × 𝜏 ′ 𝑢−→ (𝜏, 𝛼𝜏 )

Γ
⟨𝑖𝑑Γ,𝑡 ⟩;𝑠𝑡 ;𝑇𝑢;𝛼𝜏−−−−−−−−−−−−→ (𝜏, 𝛼𝜏 )

thunk

Γ
𝑡−→ (𝜏, 𝛼𝜏 )

Γ
𝑡−→ 𝜏

force

Γ
𝑉−→ 𝜏

Γ
𝑉−→ (𝜏, 𝛼𝜏 )

let

Γ
𝑉−→ 𝜏 ′ Γ × 𝜏 ′ 𝑡−→ 𝜏

Γ
⟨𝑖𝑑Γ,𝑉 ⟩;𝑡−−−−−−−→ 𝜏

pair

Γ
𝑡1−→ 𝜏1 Γ

𝑡2−→ 𝜏2

Γ
⟨𝑡1,𝑡2 ⟩−−−−→ 𝜏1 × 𝜏2

unpair

Γ
𝑉−→ 𝜏1 × 𝜏2 Γ × 𝜏1 × 𝜏2

𝑡−→ 𝜏

Γ
⟨𝑖𝑑,𝑉 ⟩;𝑡
−−−−−−→ 𝜏

Fig. 12. CBPV monadic semantics

It is also possible to give semantics to the terms of the language as depicted in Figure 12. The

semantics of if-statements use the fact that N � 1 +N, so you can define its semantics by using the

universal property of coproducts [𝑡, (!N;𝑢)], where !𝐴 : 𝐴→ 1 is the unique arrow into the terminal

object. The abstraction and application rule use the adjoint structure (Λ, 𝑒𝑣), of Cartesian closed

categories, where Λ and 𝑒𝑣 are the unit and counit of the adjunction, respectively. The produce rule

uses the unit of the monad while the bind rule is the sequential composition of a free algebra with

a non-free algebra and, therefore, requires applying the functor 𝑇 and using the algebra structure

of the output — when the output map is a free algebra, this operation is equal to the bind of the

monad. Thunk and force are basically no-ops in this semantics, while the rules let and unpair are

sequential compositions. Pair is the universal property of products.

This semantics validates the following compositionality properties. Note that we assume, without

loss of generality, that the free variable 𝑥 is the first one in the context.

Theorem A.5. For every computation 𝑥 : 𝜏 ′, Γ ⊢𝑐 𝑡 : 𝜏 and values 𝑥 : 𝜏 ′, Γ ⊢𝑣 𝑉 : 𝜏 , Γ ⊢𝑣 𝑉 ′ : 𝜏 ′,
J𝑡{𝑉 /𝑥}K = J𝑡K ◦ ⟨J𝑉 K , 𝑖𝑑⟩ and J𝑉 ′{𝑉 /𝑥}K = J𝑉 ′K𝐶𝑆 ◦ ⟨J𝑉 K , 𝑖𝑑⟩.

Proof. The proof follows by mutual structural induction on the typing derivations of 𝑡 and 𝑉 ′.

Variable : This case follows on case analysis on whether the substituted variable is equal to

the term or not.

Pair : Using the equality (𝑉1,𝑉2){𝑉 /𝑥} = (𝑉1{𝑉 /𝑥},𝑉2{𝑉 /𝑥}), the induction hypothesis and

the universal property of products, we can conclude.

Unpair : Using the equality let (𝑦1, 𝑦2) = 𝑉 ′ in 𝑡{𝑉 /𝑥} = let (𝑦1, 𝑦2) = 𝑉 ′{𝑉 /𝑥} in 𝑡{𝑉 /𝑥}, the
induction hypothesis and the bifunctoriality of the Cartesian product, we can conclude.

If : Follows from the universal property of coproducts, the induction hypothesis, the naturality

of of the diagonal morphism 𝐴→ 𝐴 ×𝐴 and the substitution definition.

Constants : Follows by unfolding definitions and using the fact that constants do not have

free variables.

Thunk : Using the equality thunk 𝑡{𝑉 /𝑥} = thunk (𝑡{𝑉 /𝑥}), the definition Jthunk 𝑡K𝑣 = J𝑡K𝑐

and the inductive hypothesis we can conclude.

Force : Using the equality force𝑉 ′{𝑉 /𝑥} = force (𝑉 ′{𝑉 /𝑥}), the definition Jforce 𝑉 ′K𝑣 = J𝑉 ′K𝑐

and the inductive hypothesis we can conclude.
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Produce : This case follows from the equality (produce 𝑉 ′){𝑉 /𝑥} = produce (𝑉 ′{𝑉 /𝑥}), the
definition Jproduce 𝑉 ′K𝑐 = 𝜂 ◦ J𝑉 ′K𝑣 and the inductive hypothesis.

Let : Using the equation (let 𝑦 be 𝑉 ′ in 𝑡){𝑉 /𝑥} = let 𝑦 be (𝑉 ′{𝑉 /𝑥}) in (𝑡{𝑉 /𝑥}) and the

induction hypothesis we can write the following equations:

Jlet 𝑦 be (𝑉 ′{𝑉 /𝑥}) in (𝑡{𝑉 /𝑥})K =
J(𝑡{𝑉 /𝑥})K ◦ ⟨J(𝑉 ′{𝑉 /𝑥})K , 𝑖𝑑⟩ =
(J𝑡K ◦ ⟨J𝑉 K , 𝑖𝑑⟩) ◦ ⟨J𝑉 ′K ◦ ⟨J𝑉 K , 𝑖𝑑⟩, 𝑖𝑑⟩ =
J𝑡K ◦ ⟨J𝑉 ′K , 𝑖𝑑⟩ ◦ ⟨J𝑉 K , 𝑖𝑑⟩

Note that the last equation holds up to the symmetric natural isomorphisms 𝐴 × 𝐵 � 𝐵 ×𝐴.
Abstraction : This case follows by using the equality 𝜆𝑦 . 𝑡{𝑉 /𝑥} = 𝜆𝑦 . (𝑡{𝑉 /𝑥}), the in-

duction hypothesis and the naturality of the Cartesian closed isomorphism C(𝐴 × 𝐵,𝐶) �
C(𝐴, 𝐵 ⇒ 𝐶).

Application : This case follows from the equality (𝑡 𝑉 ′){𝑉 /𝑥} = (𝑡{𝑉 /𝑥}) (𝑉 ′{𝑉 /𝑥}), the
induction hypothesis and the universal property of Cartesian products.

Sequencing : This case follows from the equation 𝑦 ← 𝑡 ;𝑢{𝑉 /𝑥} = 𝑦 ← (𝑡{𝑉 /𝑥}); (𝑢{𝑉 /𝑥}),
the induction hypothesis and the naturality of the monad strength. These are summarized by

the commutative diagram below.

Γ 𝜏 ′ × Γ 𝜏 ′ × Γ × Γ 𝑇𝜏 × Γ 𝑇𝜏 × (𝜏 ′ × Γ)

𝑇𝜏 × Γ 𝑇 (𝜏 × Γ) 𝑇 (𝜏 × 𝜏 ′ × Γ)

𝑇𝜏

⟨𝑉 ,𝑖𝑑 ⟩

J𝑡 {𝑉 /𝑥 }K

𝑖𝑑×Δ J𝑡K×𝑖𝑑 𝑖𝑑×⟨𝑉 ,𝑖𝑑 ⟩

𝑠𝑡 𝑠𝑡

𝑠𝑡 𝑇 (𝑖𝑑×⟨𝑉 ,𝑖𝑑 ⟩)

𝑇 (J𝑢{𝑉 /𝑥 }K)
𝑇 J𝑢K

□

Theorem A.6. For every computation context 𝐶 , if J𝑡K = J𝑢K then J𝐶 [𝑡]K = J𝐶 [𝑢]K.

Proof. The proof follows by induction on the context 𝐶 . □

A.1 Equational presentation of cert
For the sake of simplicity of the equational theory, we will assume the barycentric operations ⊕𝑝 .
In Figure 13 we present the non-structural equations of cert. The left-hand side is present in

every CBPV calculus with natural numbers and recursion, where the recursion equation is the last

one. The right-hand side is split in two blocks: the first block are the barycentric algebra equations,

the second one are the monoid equations and the last one are the list equations.

B DENOTATIONAL SOUNDNESS PROOF
In order to prove the fundamental theorem of logical relations, we first show the following lemmas,

where the first one follows by induction:

Lemma B.1. For every 𝜏 (resp. 𝜏), the relation V𝜏 (resp. C𝜏 ) is an 𝜔CPO, where the partial order
structure is the same as the one from J𝜏K𝑣𝐶𝑆 × J𝜏K𝑣𝐸𝐶 (resp. J𝜏K𝑐𝐶𝑆 × J𝜏K𝑐𝐸𝐶 ). Furthermore, the computation
relations have a least element.
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ifZero 0 then 𝑡 else𝑢 ≡ 𝑡
ifZero (𝑛 + 1) then 𝑡 else𝑢 ≡ 𝑢
𝑡 ≡ ifZero𝑥 then 𝑡 else 𝑡

(𝜆𝑥 . 𝑡) 𝑉 ≡ 𝑡{𝑉 /𝑥}
let 𝑥 be 𝑉 in 𝑡 ≡ 𝑡{𝑉 /𝑥}
𝑡 ≡ 𝜆𝑥 . 𝑡 𝑥
𝑥 ← 𝑡 ; (𝜆𝑦 . 𝑢) ≡ 𝜆𝑦 . (𝑥 ← 𝑡 ;𝑢)
force (thunk 𝑡) ≡ 𝑡
thunk (force 𝑉 ) ≡ 𝑉
𝑥 ← (produce 𝑉 ); 𝑡 ≡ 𝑡{𝑉 /𝑥}
𝑥 ← 𝑡 ; produce 𝑥 ≡ 𝑡
fix𝑥 . 𝑡 = 𝑡{(thunk (fix𝑥 . 𝑡))/𝑥}

𝑡 ⊕0 𝑢 ≡ 𝑡
𝑡 ⊕𝑝 𝑢 ≡ 𝑢 ⊕1−𝑝 𝑡
𝑡 ⊕𝑝 𝑡 ≡ 𝑡
𝑡 ⊕𝑝 (𝑢 ⊕𝑞 𝑡 ′) ≡ (𝑡 ⊕ 𝑝 (1−𝑞)

1−𝑝𝑞
𝑢) ⊕𝑝𝑞 𝑡 ′

charge𝑛; charge𝑚 ≡ charge (𝑛 +𝑚)
charge𝑛; charge𝑚 ≡ charge𝑚; charge𝑛

charge 0; 𝑡 ≡ 𝑡

case nil of nil⇒ 𝑡 | cons𝑥 𝑥𝑠 ⇒ 𝑢 ≡ 𝑡
case (cons𝑉1𝑉2) of nil⇒ 𝑡 | cons𝑥 𝑥𝑠 ⇒ 𝑢 ≡ 𝑢{𝑉1,𝑉2/𝑥, 𝑥𝑠}
𝑡 ≡ case𝑦 of nil⇒ 𝑡{nil/𝑦} | cons𝑥 𝑥𝑠 ⇒ 𝑡{cons𝑥 𝑥𝑠/𝑦}
let (𝑥1, 𝑥2) = (𝑉1,𝑉2) in 𝑡 ≡ 𝑡{𝑉1,𝑉2/𝑥1, 𝑥2}
𝑡 ≡ let (𝑥1, 𝑥2) = 𝑉 in 𝑡{(𝑉1,𝑉2)/𝑧}

Fig. 13. cert equational theory

Lemma B.2. For every type 𝜏 (resp. 𝜏), there is a set𝑀𝜏 (resp.𝑀𝜏 ) and partial order ≤ such that the
triple (V𝜏 , 𝑀𝜏 , ≤) (resp. (C𝜏 , 𝑀𝜏 , ≤)) is an 𝜔-quasi Borel space such that the injection function is a
morphism in 𝜔Qbs.

Proof. We only make explicit the proof for value types, since the case of computation types is

basically the same. We define the order ≤ to be the same as the one in J𝜏K𝑣𝐶𝑆 × J𝜏K𝑣𝐸𝐶 and𝑀 to be

the restricted random elements {𝑓 ∈ 𝑀𝜏1 | 𝑓 (R) ⊆V𝜏 }.
Since by the lemma above the logical relations are𝜔CPOs,𝑀 is closed under suprema of ascending

chains. and (V𝜏 , 𝑀, ≤) is an𝜔-quasi Borel space. The injection into J𝜏K𝑣𝐶𝑆 ×J𝜏K𝑣𝐸𝐶 being a morphism

follows by construction. □

Lemma B.3. If (𝑟, 𝜈) C𝐹𝜏 𝜇 then for every pair of functions 𝑓1 : J𝜏K𝐸𝐶 → R and 𝑓2 : J𝜏K𝐶𝑆 → R, such
that for every 𝑎1 V𝜏 𝑎2, 𝑓1 (𝑎1) ≤ 𝑓2 (𝑎2),

∫
𝑓1 d𝜈 ≤

∫
𝑓2 d𝜇2, where 𝜇2 is the second marginal of 𝜇.

Proof. Since by assumption (𝑟, 𝜈) C𝐹𝜏 𝜇, there is a coupling 𝛾 over the support ofV𝜏 , which

allows us to conclude: ∫
𝑓1 d𝜈 ≤

∫
1

2

(𝑓1 + 𝑓2) d𝛾 ≤
∫

𝑓2 d𝜇2

The equalities above hold because, in the support of 𝛾 , 𝑓1 (𝑎1) ≤ 𝑓2 (𝑎2), making 𝑓1 ≤ 1

2
(𝑓1 + 𝑓2) ≤ 𝑓2

and since 𝛾 is a joint distribution with marginals 𝜈 and 𝜇2, we have the (in)equality of integrals

above. □

At first, it is reasonable to postulate that the expected cost semantics should coincide with

the cost semantics. Unfortunately, it does not hold in the subprobabilistic case, as alluded to in

Lemma 3.17.
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Example B.4. Consider the programs

𝑡 = charge 2; produce 0

𝑢 = 𝜆𝑥 . ifZero𝑥 then (⊥ ⊕ (charge 4; produce 0)) else⊥

By unfolding definitions, we can show 𝐸 (J𝑥 ← 𝑡 ;𝑢 𝑥K𝑐𝐶𝑆 ) = (3, 12𝛿0) ≠ (4,
1

2
𝛿0) = J𝑥 ← 𝑡 ;𝑢 𝑥K𝑐𝐸𝐶 .

In the probabilistic case we can prove stronger soundness theorems. Consider the recursion-free

fragment of cert and the alternative logical relation for 𝐹𝜏 types:

C𝐹𝜏 = {((𝑟, 𝜈), 𝜇) | E(𝜇1) = 𝑟 ∧ 𝜈V#

𝜏 𝜇2}

Since the subprobabilistic and probabilistic soundness proofs are nearly identical, we will only

present the subsprobabilistic one and explicitly mention where they differ.

The following lemma is the most technical aspect of the soundness proof and, intuitively, is

saying that the logical relations for computation types can be equipped with "algebra" structures.

Furthermore, since we are proving two similar looking theorems for the probabilistic and subprob-

abilistic cases, and the soundness proof in both cases is basically the same, we will only present the

proof to the subprobabilistic case, and highlight in the proof what would differ for the probabilistic

case.

Lemma B.5. Let 𝜏1, 𝜏2 and 𝜏 be types and 𝑓1 : J𝜏1K𝑣𝐶𝑆 × J𝜏2K𝑣𝐶𝑆 → J𝜏K𝑐𝐶𝑆 , and 𝑓2 : J𝜏1K
𝑣
𝐸𝐶 × J𝜏2K𝑣𝐸𝐶 →

J𝜏K𝑐𝐸𝐶 be 𝜔Qbs morphisms such that 𝑓1 × 𝑓2, when the input is restricted toV𝜏1 × V𝜏2 , the output is
restricts to C𝜏 . It is true that (𝑠𝑡 ;𝑇1 (𝑓1);𝛼𝜏 ) × (𝑠𝑡 ;𝑇2 (𝑓2);𝛼𝜏 ), when its input is restricted toV𝜏1 × C𝐹𝜏2 ,
has its output still be restricted to C𝜏 .

Proof. This can be proved by induction on the computation type 𝜏 :

𝐹𝜏 : In order to prove 𝑓 #
1
(𝑟, 𝜈) C𝐹𝜏 ′ 𝑓 #2 (𝜇) we have to prove that their expected costs are related

by the inequality given by the definition of C𝐹𝜏 and show that there is a coupling over 𝜈

and 𝜇2, where 𝜇2 is the second marginal of 𝜇, such that it factors through the inclusion

𝑃≤1 (V𝜏 ′ ) ↩→ 𝑃≤1 (J𝜏 ′K𝑣𝐶𝑆 × J𝜏 ′K𝑣𝐸𝐶 ).

By unfolding the definitions, we get

𝜋1 (𝑓 #1 (𝑟, 𝜈)) = 𝑟 +
∫
(𝜋1 ◦ 𝑓1) d𝜈

E(𝑓 #
2
(𝜇)) =

∫ ∫
𝑛∥ 𝑓2 (𝑎)∥𝜇 (d𝑛, d𝑎) +

∫
𝑛 d(𝑓 #

2
(𝜇)1)

In the second expression, the left hand side term being summed corresponds to the expected

cost of the input while the second one corresponds to the cost of the continuation. As such,

it is sensible that, in order to reason about their difference, we should reason individually

about 𝑟 −
∫ ∫

𝑛∥ 𝑓2 (𝑎)∥ and
∫
(𝜋1 ◦ 𝑓1) d𝜈 −

∫
𝑛 d(𝑓 #

2
(𝜇)), and both should be greater than 0.

The first inequality is immediate:∫ ∫
𝑛∥ 𝑓2 (𝑎)∥ d𝜇 ≤

∫ ∫
𝑛 d𝜇 ≤ 𝑟

For the second expression, assuming ∀𝑎′ V𝜏 ′ 𝑎,E(𝑓2 (𝑎)) ≤ (𝜋1 ◦ 𝑓1) (𝑎′), we can apply

Lemma B.3 and use the equality

∫
𝑛 d(𝑓 #

2
(𝜇)1) =

∫
E(𝑓2 (𝑎)1) d𝜇2.

By adding these two inequalities we obtain exactly the first condition of the relation C𝐹𝜏 . In
the probabilistic case every inequality is an equality, since ∥ 𝑓 (𝑎)∥ = 1 and the inequalities
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in the definition of C𝐹𝜏 would be equalities as well. The second condition follows from ob-

serving that when restricting the domain of 𝑓1 × 𝑓2 toV𝜏 , we can extract from it a morphism

𝑔 :V𝜏→ 𝑃≤1 (V𝜏 ′ ) such that, given inputs (𝑣1, 𝑣2), the marginals of 𝑔(𝑣1, 𝑣2) are equal to

𝜋2 (𝑓1 (𝑣1)) and 𝑓2 (𝑣2)2 since, by assumption, 𝑓1 (𝑣1) C𝐹𝜏 ′ 𝑓2 (𝑣2).

Given this function, we define the coupling 𝑔# (𝜇′), where 𝜇′ is the coupling given by the

“witness” of (𝑟, 𝜈) C𝐹𝜏 𝜇. Showing that it has the right marginals follows from linearity of

the marginal function, concluding the proof. This part of the proof remains the same in the

probabilistic case

𝜏 → 𝜏 : This case relies more on notation and, therefore, in order to simplify the presentation,

we will rely on the symmetry of 𝑓1 and 𝑓2 and work on the generic expression 𝑠𝑡 ;𝑇 (𝑓 );𝛼𝜏→𝜏

that can be instatiated to both 𝑓1 and 𝑓2.

By definition of C𝜏→𝜏 , in order to define amorphismV𝜏1 × V𝜏2→C𝜏→𝜏 , it suffices to defines its

transposeV𝜏 ×(V𝜏1 × V𝜏2 ) →C𝜏 . Since the algebra structure of 𝛼𝜏→𝜏 is defined as 𝜂; 𝑖𝑑𝜏 ⇒
(𝑠𝑡 ;𝑇 (𝑒𝑣);𝛼𝜏 ), we want to show that the the map 𝑖𝑑𝜏 × (𝑠𝑡 ;𝑇 𝑓 ;𝜂; 𝑖𝑑𝜏 ⇒ (𝑠𝑡 ;𝑇 (𝑒𝑣);𝛼𝜏 )); 𝑒𝑣 ,
i.e. can be rewritten in the format 𝑠𝑡 ;𝑇 (𝑓 ′);𝛼𝜏 , so that we can apply the induction hypothesis.

This equation holds, up to isomorphism, by the following commutative diagram:

𝜏 × (𝜏1 ×𝑇𝜏2) 𝜏 ×𝑇 (𝜏1 × 𝜏2) 𝜏 ×𝑇 (𝜏 ⇒ 𝜏) 𝜏 × (𝜏 ⇒ (𝜏 ×𝑇 (𝜏 ⇒ 𝜏)))

𝜏 ×𝑇 (𝜏 ⇒ 𝜏) 𝜏 × (𝜏 ⇒ 𝜏)

(𝜏 × 𝜏1) ×𝑇𝜏2 𝑇 (𝜏 × (𝜏1 × 𝜏2)) 𝑇 (𝜏 × (𝜏 ⇒ 𝜏) 𝑇𝜏 𝜏

𝑖𝑑𝜏×𝑠𝑡

𝑎

𝜏×𝑇 𝑓

𝑠𝑡

𝜏×𝜂

𝑒𝑣
𝑖𝑑𝜏×(𝑖𝑑𝜏⇒(𝑠𝑡 ;𝑇𝑒𝑣;𝛼𝜏 ) )

𝑠𝑡 𝑒𝑣

𝑠𝑡 ;𝑇 (𝑎−1 ) 𝑇 (𝜏×𝑓 ) 𝑇𝑒𝑣 𝛼𝜏

From left to right, the first diagram commutes by definition of strong monad, the second

commutes from naturality of the strength of 𝑇 , the triangular diagram commutes by the

Cartesian closed adjunction and the final diagram commutes by naturality of 𝑒𝑣 . □

We are interested in the case where the type 𝜏1 will be a context Γ. We now state the denotational

soundness theorem:

Theorem B.6. For every Γ = 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛 , Γ ⊢𝑣 𝑉 : 𝜏 , Γ ⊢𝑐 𝑡 : 𝜏 and if for every 1 ≤ 𝑖 ≤ 𝑛,
· ⊢𝑣 𝑉𝑖 : 𝜏𝑖 and J𝑉𝑖K𝐶𝑆 V𝜏𝑖 J𝑉𝑖K𝐸𝐶 , then

r
let 𝑥𝑖 = 𝑉𝑖 in 𝑡

z𝑐

𝐶𝑆
C𝑐
𝜏

r
let 𝑥𝑖 = 𝑉𝑖 in 𝑡

z𝑐

𝐸𝐶
and

r
let 𝑥𝑖 = 𝑉𝑖 in 𝑉

z𝑣

𝐶𝑆
V𝜏

r
let 𝑥𝑖 = 𝑉𝑖 in 𝑉

z𝑣

𝐸𝐶
,

where the notation 𝑥𝑖 = 𝑉𝑖 means a list of 𝑛 let-bindings or, in the case of values, a list of substitutions.

Proof. The proof follows from mutual induction on Γ ⊢𝑣 𝑉 : 𝜏 and Γ ⊢𝑐 𝑡 : 𝜏 . Many of the cases

follow by just applying the induction hypothesis or by assumptions in the theorem statement. We

go over the most interesting cases:

Comp This case follows from Lemma B.5.

, Vol. 1, No. 1, Article . Publication date: February 2025.



34 Pedro H. Azevedo de Amorim

Fix This theorem follows from the induction hypothesis and from the fact that the relations C𝑐
𝜏

are closed under suprema of ascending chains.

Produce First apply the induction hypothesis to𝑉 and assume that J𝑉 K𝐶𝑆 = 𝑣1 and J𝑉 K𝐸𝐶 = 𝑣2.

By construction, 𝜂𝑇1 (𝑣1) C𝑣𝐹𝜏 𝜂
𝑇2 (𝑣2), since they both have the same expected value and the

coupling is 𝛿 (𝑣1,𝑣2 ) .
Case By applying the inductive hypothesis to 𝑉 we may do case analysis on it and if it is

the empty list, we use the inductive hypothesis on 𝑡 and, otherwise, we use the inductive

hypothesis on 𝑢. □

We now have a very precise sense in which the expected-cost semantics is related to the cost

semantics:

Corollary B.7. The expected-cost semantics is sound with respect to the cost semantics, i.e. for every
program · ⊢𝑐 𝑡 : 𝐹𝜏 , the expected cost of the second marginal of J𝑡K𝑐𝐶𝑆 greater than 𝜋1 (J𝑡K𝑐𝐸𝐶 ).

In the recursion-free case, the definition of C𝐹𝜏 gives us a stronger soundness property.

Corollary B.8. The recursion-free expected-cost semantics is sound with respect to the cost semantics,
i.e. for every program · ⊢𝑐 𝑡 : 𝐹𝜏 , the expected cost of the second marginal of J𝑡K𝑐𝐶𝑆 is equal to 𝜋1 (J𝑡K

𝑐
𝐸𝐶 ).

C OPERATIONAL SOUNDNESS PROOF
We now prove the soundness theorem.

Proof. Proof by induction on 𝑛 and on 𝑡 . The base case 𝑛 = 0 is trivial because ⊥ is the least

element and such an element is preserved by the algebra structure. The inductive ones follow

basically from the inductive hypothesis and the CBPV equational theory.

Terminal : The evaluation rules for terminal computations 𝑇 output the unit of the monad,

which allows us to conclude J⇓𝑛 (𝑇 )K = (𝑥 ← (𝛿 (0,𝑇 ) ); J𝑥K𝐶𝑆 ) = J𝑇 K𝐶𝑆 .
Charge : J⇓𝑛 (charge 𝑟 )K = 𝛿 (𝑟,( ) ) = Jcharge 𝑟K𝐶𝑆 .
Sampling : J⇓𝑛 (uniform)K = 𝛿0 ⊗ 𝜆 = JuniformK𝐶𝑆 .
Seq :

J⇓𝑛 (𝑥 ← 𝑡 ;𝑢)K =
(produce 𝑉 ) ← ⇓𝑛 (𝑡);𝑦 ← ⇓𝑛−1 (𝑢{𝑉 /𝑥}); J𝑦K𝐶𝑆 ≤
(produce 𝑉 ) ← ⇓𝑛 (𝑡); J𝑢{𝑉 /𝑥}K𝐶𝑆 =

(produce 𝑉 ) ← ⇓𝑛 (𝑡);𝑥 ← Jproduce 𝑉 K𝐶𝑆 ; J𝑢K𝐶𝑆 =

𝑥 ← (𝑦 ← ⇓𝑛 (𝑡); J𝑦K𝐶𝑆 ); J𝑢K𝐶𝑆 ≤
𝑥 ← J𝑡K𝐶𝑆 ; J𝑢K𝐶𝑆 = J𝑥 ← 𝑡 ;𝑢K𝐶𝑆

App :

J⇓𝑛 (𝑡 𝑉 )K = (𝜆𝑥 . 𝑡 ′) ← ⇓𝑛 (𝑡);𝑦 ← ⇓𝑛−1 (𝑡 ′{𝑉 /𝑥}); J𝑦K𝐶𝑆 ≤
(𝜆𝑥 . 𝑡 ′) ← ⇓𝑛 (𝑡); J(𝜆𝑥 . 𝑡 ′)𝑉 K𝐶𝑆 = 𝑓 ← ⇓𝑛 (𝑡); J𝑓 K𝐶𝑆 (J𝑉 K𝐶𝑆 ) =
(𝑓 ← ⇓𝑛 (𝑡); J𝑓 K𝐶𝑆 ) (J𝑉 K𝐶𝑆 ) ≤ J𝑡K𝐶𝑆 (J𝑉 K𝐶𝑆 ) = J𝑡 𝑉 K𝐶𝑆
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Fix : By unfolding the operational semantics,

J⇓𝑛 (fix𝑥 . 𝑡)K =
J⇓𝑛−1 (𝑡{thunk fix𝑥 . 𝑡/𝑥})K ≤
J𝑡{thunk fix𝑥 . 𝑡/𝑥}K𝐶𝑆 =

Jfix𝑥 . 𝑡K𝐶𝑆
IzZ0 : By unfolding the operational semantics,

J⇓𝑛 (ifZero 0 then 𝑡 else𝑢)K =
J⇓𝑛 (𝑡)K ≤ J𝑡K𝐶𝑆 =

JifZero 0 then 𝑡 else𝑢K𝐶𝑆
IzZS : By unfolding the operational semantics,

J⇓𝑛 (ifZero𝑛 + 1 then 𝑡 else𝑢)K =
J⇓𝑛 (𝑢)K ≤ J𝑢K𝐶𝑆 =

JifZero𝑛 + 1 then 𝑡 else𝑢K𝐶𝑆
UnPair :

J⇓𝑛 (let (𝑥1, 𝑥2) = (𝑉1,𝑉2) in 𝑡)K =
J⇓𝑛−1 (𝑡{𝑉1,𝑉2/𝑥1, 𝑥2})K ≤
J𝑡K𝐶𝑆 (J𝑉1K𝐶𝑆 , J𝑉2K𝐶𝑆 ) =
Jlet (𝑥1, 𝑥2) = (𝑉1,𝑉2) in 𝑡)K𝐶𝑆

caseNil :

J⇓𝑛 (case nil of nil⇒ 𝑡 | cons𝑥 𝑥𝑠 ⇒ 𝑢)K =
J⇓𝑛 (𝑡)K ≤ J𝑡K𝐶𝑆 =

Jcase nil of nil⇒ 𝑡 | cons𝑥 𝑥𝑠 ⇒ 𝑢)K𝐶𝑆
caseCons :

J⇓𝑛 (case cons𝑉1𝑉2 of nil⇒ 𝑡 | cons𝑥 𝑥𝑠 ⇒ 𝑢)K =
J⇓𝑛−1 (𝑢{𝑉1,𝑉2/𝑥1, 𝑥2})K ≤
J𝑢{𝑉1,𝑉2/𝑥1, 𝑥2})K𝐶𝑆 =

Jcase cons𝑉1𝑉2 of nil⇒ 𝑡 | cons𝑥 𝑥𝑠 ⇒ 𝑢K𝐶𝑆
□

D OPERATIONAL ADEQUACY PROOF
As it is usually the case with adequacy proofs, it follows by a logical relations argument. Before

defining it, we define a relation lifting for the subprobability cost monad. Next, we define an

extension of the logical relations ▷𝜏 to contexts.

Definition D.1. Let Γ = 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛 , · ⊢𝑣 𝑉𝑖 : 𝜏1 and 𝛾 : JΓK𝑣𝐶𝑆 . We say that (𝑉1, . . . ,𝑉𝑛) ▷Γ 𝛾
if, and only if, 𝑉𝑖 ▷𝜏𝑖 𝜋𝑖 (𝛾), for every 𝑖 ∈ {1, . . . , 𝑛}. We will use the letter 𝐺 to denote the list of

values of (𝑉1, . . . ,𝑉𝑛).

In order to prove the fundamental theorem of logical relations we require a couple of lemmas

that are proved by induction.
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Lemma D.2. Let 𝑇 be the subprobability cost monad 𝑃≤1 (N × −), Γ be a context, 𝜏1 and 𝜏 types,
Γ, 𝑥 : 𝜏1 ⊢ 𝑡 : 𝜏 a computation and 𝑓 : JΓK𝑣𝐶𝑆 × J𝜏1K𝑣𝐶𝑆 → J𝜏K𝑐𝐶𝑆 a 𝜔Qbs morphism such that for every
· ⊢𝑣 𝑉 : 𝜏1 with 𝑉 ▷𝜏1 𝑣 , ⇓(𝑡{𝐺,𝑉 /Γ, 𝑥}) �𝜏 𝑓 (𝛾, 𝑣), then ⇓(𝑥 ← 𝑢; 𝑡{𝐺/Γ}) �𝜏 (𝛼𝜏 ◦ 𝑇 𝑓 (𝛾)) (𝜈),
whenever ⇓(𝑢) �𝐹𝜏1 𝜈 and 𝐺 ▷Γ 𝛾 .

Proof. Fix 𝐺 ▷Γ 𝛾 . The proof follows by induction on the computation type 𝜏 .

𝐹𝜏 : This proof follows by unfolding the definitions. Given the definition of the relational lifting

for the cost monad, let ℎ : N ×𝑇 ·⊢𝑐𝐹𝜏 → [0, 1] and 𝑔 : N × J𝜏K𝐶𝑆 → [0, 1] be functions such
that for every 𝑉 ′′ ▷𝜏 𝑣 ′′ and 𝑛 : N, 𝑔(𝑛, 𝑣 ′′) ≤ ℎ(𝑛, 𝑣 ′′). Therefore, we have to show that∫
𝑔(𝑛 + 𝑛′, 𝑦) d((𝑛′, 𝑣) ← 𝜈 ; 𝑓 (𝛾, 𝑣)) ≤

∫
𝑓 (𝑛 + 𝑛′, 𝑦) d((𝑛′,𝑉 ′) ← ⇓(𝑢); ⇓(𝑡{𝐺,𝑉 ′/Γ, 𝑥}))

Using the equational theory of CBPV and the commutativity equation, the expression above

is equivalent to

(𝑛′, 𝑣) ← 𝜈 ;

∫
𝑔(𝑛 + 𝑛′, 𝑦) d(𝑓 (𝛾, 𝑣)) ≤ (𝑛′,𝑉 ′) ← ⇓(𝑢);

∫
𝑓 (𝑛 + 𝑛′, 𝑦) d(⇓(𝑡{𝐺,𝑉 ′/Γ, 𝑥}))

By assumption, for every 𝑉 ▷𝜏1 𝑣 ,
∫
𝑔 d(𝑓 (𝑣)) ≤

∫
𝑓 d(⇓(𝑡{𝑉 /𝑥})). We conclude this case

by using the assumption ⇓(𝑢) �𝐹𝜏1 𝜈 and the functions 𝑔′ (𝑛′, 𝑣) =
∫
𝑔(𝑛 + 𝑛′, 𝑦) d(𝑓 (𝛾, 𝑣))

and ℎ′ (𝑛′,𝑉 ) =
∫
ℎ(𝑛 +𝑛′, 𝑦) d(⇓(𝑡{𝐺,𝑉 /Γ, 𝑥})). Since, by construction, 𝑔′ and ℎ′ satisfy the

property that whenever 𝑉1 ▷𝜏1 𝑣1, ℎ
′ (𝑛′, 𝑣1) ≤ 𝑔′ (𝑛′,𝑉1), for every 𝑛′ : N, we can show:

(𝑛′, 𝑣) ← 𝜈 ;

∫
𝑔(𝑛 + 𝑛′, 𝑦) d(𝑓 (𝛾, 𝑣)) =∫

𝑔′ d(𝜈) ≤∫
ℎ′ d(⇓(𝑢)) =

(𝑛′,𝑉 ′) ← ⇓(𝑢);
∫

𝑓 (𝑛 + 𝑛′, 𝑦) d(⇓(𝑡{𝐺,𝑉 ′/Γ, 𝑥}))

𝜏 → 𝜏 : For this case, let𝑉 ′ ▷𝜏 𝑣 ′.We have to show that ((𝜆𝑦 . 𝑡 ′) ← ⇓(𝑥 ← 𝑢; 𝑡); ⇓(𝑡 ′{𝐺,𝑉 ′/Γ, 𝑦})�𝜏

𝑥 ← 𝜈 ; 𝑓 (𝛾, 𝑥, 𝑣 ′). Rewriting it, we obtain the following equivalent relation𝑉 ← ⇓(𝑢); (𝜆𝑦 . 𝑡 ′) ←
⇓(𝑡); ⇓(𝑡 ′{𝐺,𝑉 ′/Γ, 𝑦})�𝜏 𝑥 ← 𝜈 ; 𝑓 (𝛾, 𝑥, 𝑣 ′). We prove this by using the induction hypothesis

for the type 𝜏 . We choose Γ, 𝑥 : 𝜏1 ⊢ 𝑡 𝑉 ′ and 𝑣 ↦→ 𝑓 (𝛾, 𝑣, 𝑣 ′) in the inductive hypothesis,

which allows us to conclude.

□

Lemma D.3. For every computation type 𝜏 and for every distribution 𝜇, 𝜇 �𝜏 ⊥ and if 𝜇 �𝜏 𝑥𝑛 , for
an ascending chain 𝑥0 ≤ · · · ≤ 𝑥𝑛 ≤ · · · , then 𝜇 �𝜏 sup𝑛 (𝑥𝑛).

Proof. The proof follows by induction on 𝜏 . For the base case, let 𝑓 : 𝑇 ·⊢𝑐𝐹𝜏 → [0, 1] and
𝑔 : J𝜏K𝐶𝑆 → [0, 1] be functions such that whenever 𝑉 ▷𝜏 𝑥 , 𝑔(𝑛, 𝑥) ≤ 𝑓 (𝑉 ). Since ⊥ in 𝐹𝜏 is the 0,

measure,

∫
𝑔 d0 = 0 ≤

∫
𝑓 d(⇓(𝑡)). The stability under suprema of ascending chains follows from

Scott-continuity of integration.

For the case 𝜏 → 𝜏 , we use the inductive hypothesis and the fact that the order of functions is

given pointwise. □

Theorem D.4 (Fundamental Theorem of Logical Relations). If Γ ⊢𝑐 𝑡 : 𝜏 (resp. Γ ⊢𝑣 𝑉 : 𝜏) and
𝐺 ▷Γ 𝛾 then ⇓(𝑡{𝐺/Γ}) �𝜏 J𝑡K𝐶𝑆 (𝛾) (resp. 𝑉 {𝐺/Γ} ▷𝜏 J𝑉 K𝐶𝑆 (𝛾)).
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Proof. The proof follows by mutual induction on the typing derivations of 𝑡 and 𝑉 .

Var : Assuming that 𝑥𝑖 {𝐺/Γ} = 𝑉𝑖 , where we assume that the 𝑖-th elements of 𝐺 and Γ are,

respectively, 𝑉𝑖 and 𝑥𝑖 , which implies the conclusion by the assumption 𝑉𝑖 ▷ 𝑣𝑖 .
Arithmetic constants : Follows by inspection.

Pair : Follows directly from the induction hypotheses.

Charge : By unfolding the definitions, ⇓(charge𝑉 {𝐺/Γ}) = 𝛿 (J𝑉 {𝐺/Γ}K,( ) ) = Jcharge𝑉 {𝐺/Γ}K𝐶𝑆 .
Therefore, since▷1= {((), ())} and the distributions ⇓(charge𝑉 {𝐺/Γ}) and Jcharge𝑉 {𝐺/Γ}K𝐶𝑆
are the same, we can conclude by definition of �𝐹𝜏 .

Sample : By unfolding the definitions, ⇓(uniform) = 𝛿0 ⊗ 𝜆 = JuniformK𝐶𝑆 . Therefore, since
▷R= {(𝑟, 𝑟 ) | 𝑟 ∈ R} and the distributions ⇓(uniform) and JuniformK𝐶𝑆 are the same, we can

conclude by definition of �𝐹𝜏

Fix : Followsmostly fromLemmaD.3.We begin by proving that ⇓(fix𝑥 .(𝑡{𝐺/Γ}))�𝜏 (J𝑡K𝐶𝑆 (𝛾))𝑛 (⊥),
for every 𝑛 : N. The proof follows by induction on 𝑛 and, in order to avoid visual pollution,

let 𝑡 ′ = 𝑡{𝐺/Γ}.
0 : In this case, (J𝑡K𝐶𝑆 (𝛾))0 (⊥) = ⊥, so we can apply Lemma D.3.

𝑛 + 1 : For this case, we apply the induction hypothesis and get

⇓(fix𝑥 .𝑡 ′) �𝜏 (J𝑡K𝐶𝑆 (𝛾))𝑛 (⊥)

Next, using the definition of ▷𝑈𝜏 , we can conclude that

thunk (fix𝑥 .𝑡 ′) ▷𝑈𝜏 (J𝑡K𝐶𝑆 (𝛾))𝑛 (⊥)

Now, we apply the global induction hypothesis and conclude

⇓(fix𝑥 .𝑡 ′) = ⇓(𝑡 ′{thunk (fix𝑥 .𝑡 ′)/𝑥}) �𝜏 (J𝑡K𝐶𝑆 (𝛾))𝑛+1 (⊥)

Therefore, by Lemma D.3 ⇓(fix𝑥 .𝑡 ′) �𝜏

⊔
𝑛 (J𝑡K𝐶𝑆 (𝛾))𝑛 (⊥).

Abstraction : Follows directly from the equation (𝜆𝑥 . 𝑡){𝐺/Γ} = 𝜆𝑥 . (𝑡{𝐺/Γ}), the equation
⇓(𝜆𝑥 . 𝑡{𝐺/Γ}) = 𝛿 (0,𝜆𝑥 . 𝑡 ) and the induction hypothesis. We will now show show that

⇓(𝜆𝑥 . 𝑡{𝐺/Γ}) �𝜏→𝜏 J𝑡K𝐶𝑆 (𝛾). Let 𝑉 ▷𝜏 𝑣 , we have to show

((𝜆𝑥 . 𝑡 ′) ← ⇓(𝜆𝑥 . 𝑡{𝐺/Γ}); ⇓(𝑡 ′{𝑉 /𝑥})) �𝜏 J𝑡K𝐶𝑆 (𝛾, 𝑣)

The LHS of that expression is equal to ⇓(𝑡{𝐺,𝑉 /Γ, 𝑥}). We conclude by applying the induction

hypothesis to Γ, 𝑥 : 𝜏 ⊢𝑐 𝑡 : 𝜏 and 𝑉 ▷𝜏 𝑣 .
Application : Follows directly from equation (𝑡 𝑉 ){𝐺/Γ} = (𝑡{𝐺/Γ}) 𝑉 {𝐺/Γ}, the induction

hypothesis and the definition of �𝜏→𝜏 .

Produce : We conclude by the induction hypothesis for a value 𝑉 , the equalities ⇓(𝑉 {𝐺/Γ}) =
𝛿 (0,𝑉 {𝐺/Γ}) and Jproduce 𝑉 {𝐺/Γ}K𝐶𝑆 = 𝛿 (0,J𝑉 K𝐶𝑆 (J𝐺K𝐶𝑆 ) ) , and the fact that for every measur-

able function 𝑓 : 𝐴→ [0, 1],
∫
𝑓 d(𝛿𝑥 ) = 𝑓 (𝑥).

Force : Follows from the fact that the only well-typed closed programs of type𝑈𝜏 are those

of the form thunk 𝑡 , for some computation 𝑡 , the equation ⇓(force thunk 𝑡) = ⇓(𝑡) and the

induction hypothesis.

Thunk : Follows directly from the substitution equality (thunk 𝑡){𝐺/Γ} = thunk (𝑡{𝐺/Γ}),
the induction hypothesis and the definition of ▷𝑈𝜏 .

List Case : Using the distributivity of substitution, the fact that closed values of type list are

either the empty list or the cons of a list, and the induction hypothesis, we can conclude.

Seq : First, use the distributivity of substitution (𝑥 ← 𝑡 ;𝑢){𝐺/Γ} = 𝑥 ← 𝑡{𝐺/Γ};𝑢{𝐺/𝛾}. We

conclude by applying Lemma D.2 and noting that its assumptions are exactly the induction

hypotheses applied to 𝑡{𝐺/Γ} and 𝑢{𝐺/Γ}. □
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E EXAMPLES
E.1 RandomWalks
For this example we are interested in the symmetric random walk over the natural numbers. At

every point 𝑛 the probability of moving to 𝑛 − 1 or 𝑛 + 1 is 1

2
. Furthermore, we are assuming the

variant where at 0 you move to 1 with probability 1. We can write a program that simulates such a

random walk with a point of departure 𝑖 : N and a point of arrival 𝑗 : N:

randomWalk = 𝜇𝑓 : N→ N→ 𝐹1. 𝜆𝑖 : N 𝑗 : N.

if 𝑖 = 𝑗 then

produce ()
else

charge 1;

if 𝑖 then

(force 𝑓 ) 1 𝑗
else

((force 𝑓 ) (𝑖 − 1) 𝑗) ⊕ ((force 𝑓 ) (𝑖 + 1) 𝑗)

The program receives the starting and end points, 𝑖 and 𝑗 , respectively, as arguments, and if they

are equal, you stop the random walk. Otherwise, you take one step of the random walk, i.e. you take

step to either 𝑖−1 or 𝑖+1with equal probability, with the exception of when 𝑖 = 0, in which case you

go to 1. This iterative behaviour can be straightforwardly captured with recursion, as illustrated by

the program above. This is basically the mathematical specification of the one-dimensional random

walk with barrier. As such, we know that it terminates with probability 1, cf Section 1.6 of [37]).

By unfolding the denotational semantics, we obtain that the cost expression is given by the fixed

point of the operator

𝜆𝐹 : N→ N→ [0,∞] . 𝜆𝑖 : N 𝑗 : N .
if 𝑖 = 𝑗 then

0

elseif 𝑖 = 0 then

1 + 𝐹 (1, 𝑗)
else

1 + 1

2

(𝐹 (𝑖 − 1, 𝑗) + 𝐹 (𝑖 + 1, 𝑗))

It is now possible to compute the expected value on the number of rounds that are necessary

in order to reach your target, which following the expression above, is given by the following

two-argument recursive relation.

𝑇 (𝑖, 𝑖) = 0

𝑇 (0, 𝑗) = 1 +𝑇 (1, 𝑗)

𝑇 (𝑖, 𝑗) = 1 + 1

2

(𝑇 (𝑖 − 1, 𝑗) +𝑇 (𝑖 + 1, 𝑗))

This recurrence relation is well-known in the theory of Markov chains — see [37] for an introduction.

Something interesting about it is that when 𝑖 > 𝑗 , this stochastic process reduces to the symmetric

random walk without an absorbing state, which is known to have∞ expected cost.
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unifList = fix 𝑓 .𝜆𝑛.

ifZero𝑛 then

produce nil

else

𝑙 ← unifList (𝑛 − 1)
𝑥 ← uniform

𝑦 ← uniform

produce (cons (𝑥,𝑦) 𝑙)

sieve = 𝜆𝑙 : N.

𝑝1 ← min(𝜆(𝑥,𝑦) . 𝑥 + 𝑦) 𝑙
𝑝2 ← min(𝜆(𝑥,𝑦) . 𝑥 − 𝑦) 𝑙
𝑝3 ← min(𝜆(𝑥,𝑦) . − 𝑥 + 𝑦) 𝑙
𝑝4 ← min(𝜆(𝑥,𝑦) . − 𝑥 − 𝑦) 𝑙
filter (charge 1; iQ 𝑝1 𝑝2 𝑝3 𝑝4) 𝑙

scan = fix 𝑓 . 𝜆𝑙 . 𝜆𝑠𝑡𝑘.

charge 1

case (𝑙, 𝑠𝑡𝑘) of
| nil, _⇒ produce 𝑠𝑡𝑘

| (𝑥 :: 𝑥𝑠), nil⇒ 𝑓 𝑥𝑠 [𝑥]
| (𝑥 :: 𝑥𝑠), [𝑝] ⇒ 𝑓 𝑥𝑠 [𝑥, 𝑝]
| (𝑥 :: 𝑥𝑠), (𝑝1 :: 𝑝2 :: 𝑝𝑠) ⇒
if clockOrNot𝑝2 𝑝1 𝑥 then

𝑓 (𝑥 :: 𝑥𝑠) (𝑝2 :: 𝑝𝑠)
else

𝑓 𝑥𝑠 (𝑥 :: 𝑠𝑡𝑘)

graham = 𝜆𝑙 .

(𝑥,𝑦) ← min_xy 𝑙

𝑙 ′ ← quicksort (charge 1;⊑ 𝑝)𝑙
scan 𝑙 ′ nil

convexHull = 𝜆𝑛 : N.

𝑙 ← unifList𝑛

𝑙 ′ ← sieve 𝑙

graham 𝑙 ′

Fig. 14. Stochastic convex hull algorithm

E.2 Stochastic Convex Hull
In computational geometry, finding the convex hull of a set of points in space is an important

algorithm that has been thoroughly studied. In this case study, we go over a variant of this algorithm

that has a linear expected runtime cost.

This algorithm can be divided into three separate components. The first one generates a uniformly

and independently sampled list in the square [0, 1]2. The second one sieves the original list of

points so that points that are “obviously” not a part of the convex hull are eliminated. The last part

is any convex hull algorithm that runs in𝑂 (𝑛 log𝑛). It is important to note that this algorithm only

has this time complexity under the assumption that the input list is uniformly distributed. Indeed,

the time complexity of this algorithm hinges on the following lemma.

Lemma E.1. (Th. 2.2 of Golin [15]) Let 𝑃 ⊆ [0, 1]2 be an independent and uniformly distributed
finite set of 𝑛 points. There is a square 𝑅 which is inside 𝑃 ’s convex hull such that the size of the set of
points in 𝑃 outside of 𝑅 is 𝑂 (

√
𝑛).

We can also prove that convexHull terminates with probability 1.

Lemma E.2. The total mass of 𝜋2 (JconvexHullK𝐸𝐶 ) is 1.

Proof. The only component that might be problematic is the scan function, which terminates

since it is structurally recursive on the lexicographic order on lists. □

Lemma E.3. The graham-scan function has runtime 𝑂 (𝑛 log𝑛), where 𝑛 is the length of the input.

Proof. By unfolding the denotational semantics, we see that its cost is given by adding the cost

of the minxy, quicksort and scan functions. By the quicksort case study, its cost is 𝑂 (𝑛 log𝑛). We
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are assuming that the cost of minxy is linear on the length of the list. Finally, the cost of scan is

also linear, though the proof is a bit more involved, so we will not go over it and, instead, will

point to a standard analysis of Graham scan [16]. Therefore, the overall cost is bounded above by

𝑂 (𝑛 log𝑛). □

Theorem E.4. The stochastic convex hull algorithm has linear expected run time.

Proof. The cost analysis is given by the expected cost of the sieve function plus the average of

the graham function. The cost of the sieve function is 𝑂 (𝑛), since it iterates over the input list 5
times. The graham function has its cost bounded by the sorting function, which costs 𝑂 (𝑛′ log𝑛′),
where 𝑛′ is the length of the output from the sieve function. By Lemma E.1, the output list has an

expected length of 𝑂 (
√
𝑛). Thus, assuming that the 𝑛 points in 𝑙 have been sampled uniformly and

independently from [0, 1]2 and 𝜇 = (𝜋2 ◦ JsieveK𝐸𝐶 ) (𝑙), the cost structure becomes:

(𝜋1 ◦ JsieveK#𝐸𝐶 ) ((𝑛)) +
∫
(𝜋1 ◦ JgrahamK𝐸𝐶 ) (𝑙 ′) d𝜇 (𝑙 ′) ≤

𝑂 (𝑛) +
∫
(𝜋1 ◦ JgrahamK𝐸𝐶 ) (𝑙 ′) d𝜇 (𝑙 ′) ≤

𝑂 (𝑛) +
∫

log(length(𝑙 ′))length(𝑙 ′) d𝜇 (𝑙 ′) ≤

𝑂 (𝑛) + log(𝑛)
∫

length(𝑙 ′) d𝜇 (𝑙 ′) ≤

𝑂 (𝑛) +𝑂 (
√
𝑛) log𝑛 ≤ 𝑂 (𝑛) □

F PROOFS OF MISCELLANEOUS LEMMAS AND THEOREMS
F.1 Proof of Theorem 3.12

Proof. Since 𝑃≤1 is a monad, and the second component of themonad operations of [0,∞]×𝑃≤1−
are identical to the ones of 𝑃≤1, we only need to prove the monad laws for the first component.

The unit laws follow from:

𝜋1 (𝜂# (𝑟, 𝜇)) = 𝑟 + 0 = 𝑟
𝜋1 ((𝑓 # ◦ 𝜂) (𝑥)) = 𝜋1 (𝑓 # (0, 𝛿𝑥 )) = 0 + 𝜋1 (𝑓 (𝑥))

While the last law requires a bit more work:

𝜋1 ((𝑓 # ◦ 𝑔#) (𝑟, 𝜇)) = 𝜋1 (𝑓 # (𝑟 +
∫
(𝜋1 ◦ 𝑔) d𝜇, (𝜋2 ◦ 𝑔)#𝑃≤1 (𝜇))) =

𝑟 +
∫
(𝜋1 ◦ 𝑔) d𝜇 +

∫
(𝜋1 ◦ 𝑓 ) d((𝜋2 ◦ 𝑔)#𝑃≤1 (𝜇)) = 𝜋1 ((𝑓

# ◦ 𝑔)# (𝑟, 𝜇))

The last equation follows from the monad laws of 𝑃≤1. □

F.2 Proof of Theorem 4.4
Proof. Since both semantics are the monadic semantics of CBPV, we know by Proposition 121

of [31] that they satisfy the equations that do not reference the sampling and cost operations. We

only have to prove that the equations that are specific to them are satisfied by both semantics.

⊕0 unit : J𝑡 ⊕0 𝑢K𝐶𝑆 = J𝑡K𝐶𝑆 + 0 J𝑢K𝐶𝑆 = J𝑡K𝐶𝑆 and J𝑡 ⊕0 𝑢K𝐸𝐶 = J𝑡K𝐸𝐶 + 0 J𝑢K𝐸𝐶 = J𝑡K𝐸𝐶 , where
addition and scalar multiplication for the expected cost semantics are defined componentwise.

⊕𝑝 symmetry :

q
𝑡 ⊕𝑝 𝑢

y
𝐶𝑆

= (1 − 𝑝) J𝑡K𝐶𝑆 + 𝑝 J𝑢K𝐶𝑆 =
q
𝑢 ⊕1−𝑝 𝑡

y
𝐶𝑆

and

q
𝑡 ⊕𝑝 𝑢

y
𝐸𝐶

= (1 −
𝑝) J𝑡K𝐸𝐶 + 𝑝 J𝑢K𝐸𝐶 =

q
𝑢 ⊕1−𝑝 𝑡

y
𝐸𝐶

.
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⊕𝑝 idempotent :

q
𝑡 ⊕𝑝 𝑡

y
𝐶𝑆

= (1−𝑝) J𝑡K𝐶𝑆 +𝑝 J𝑡K𝐶𝑆 = J𝑡K𝐶𝑆 and
q
𝑡 ⊕𝑝 𝑡

y
𝐸𝐶

= (1−𝑝) J𝑡K𝐸𝐶 +
𝑝 J𝑡K𝐸𝐶 = J𝑡K𝐸𝐶
⊕𝑝⊕𝑞 associativity :

q
𝑡 ⊕𝑝 (𝑢 ⊕𝑞 𝑡 ′)

y
𝐶𝑆

=

(1 − 𝑝) J𝑡K𝐶𝑆 + 𝑝 ((1 − 𝑞) J𝑢K𝐶𝑆 + 𝑞 J𝑡 ′K𝐶𝑆 ) =
(1 − 𝑝) J𝑡K𝐶𝑆 + 𝑝 (1 − 𝑞) J𝑢K𝐶𝑆 + 𝑝𝑞 J𝑡 ′K =
(J𝑡K𝐶𝑆 ⊕ 𝑝 (1−𝑞)

1−𝑝𝑞
J𝑢K𝐶𝑆 ) ⊕𝑝𝑞 J𝑡 ′K𝐶𝑆

The reasoning for the expected cost semantics is analog.

charge𝑛 monoid action : Jcharge𝑛; charge𝑚K𝐶𝑆 = 𝛿 (𝑛+𝑚,( ) ) = Jcharge (𝑛 +𝑚)K𝐶𝑆 and for

the expected cost semantics Jcharge𝑛; charge𝑚K𝐸𝐶 = (𝑛 +𝑚,𝛿 ( ) ) = Jcharge (𝑛 +𝑚)K𝐸𝐶 .
charge𝑛 commutativity : Jcharge𝑛; charge𝑚K𝐶𝑆 = 𝛿 (𝑛+𝑚,( ) ) = Jcharge𝑚; charge𝑛K𝐶𝑆 and

Jcharge𝑛; charge𝑚K𝐸𝐶 = (𝑛 +𝑚,𝛿 ( ) ) = Jcharge𝑚; charge𝑛K𝐸𝐶 .
charge 0 unit : Jcharge 0; 𝑡K𝐶𝑆 = J𝑡K#𝐶𝑆 (𝛿 (0,( ) ) = J𝑡K𝐶𝑆 and Jcharge 0; 𝑡K𝐸𝐶 = (0+(𝜋1◦J𝑡K𝐸𝐶 ) (()), (𝜋2◦

J𝑡K𝐸𝐶 ) (())) = ((𝜋1 ◦ J𝑡K𝐸𝐶 ) (()), (𝜋2 ◦ J𝑡K𝐸𝐶 ) (())) = J𝑡K𝐸𝐶 □

F.3 Proof of Theorem 4.5
Proof. The proof follows basically by commutativity of 𝑃≤1:

J𝑥 ← 𝑡 ;𝑦 ← 𝑢; 𝑡 ′K𝐶𝑆 =∫
N×𝐴

∫
N×𝐵

𝑃≤1 (𝑓 ) (J𝑡 ′K𝐶𝑆 (𝑎, 𝑏)) J𝑢K𝐶𝑆 (d𝑛1 d𝑎) J𝑡K𝐶𝑆 (d𝑛2 d𝑏) =∫
N×𝐵

∫
N×𝐴

𝑃≤1 (𝑓 ) (J𝑡 ′K𝐶𝑆 (𝑎, 𝑏)) J𝑡K𝐶𝑆 (d𝑛2 d𝑏) J𝑢K𝐶𝑆 (d𝑛1 d𝑎) =

J𝑦 ← 𝑢;𝑥 ← 𝑡 ; 𝑡 ′K𝐶𝑆 , where 𝑓 (𝑛, 𝑐) = (𝑛 + 𝑛1 + 𝑛2, 𝑐) □

F.4 Proof of Theorem 4.7
We will formalize the maximality of the equation using the concept of the center of a monad, which

we now start to define.

Definition F.1 ([7]). Let 𝑋 : C be an object in a Cartesian category and 𝑇 : C → C a monad. A

central cone at 𝑋 is a pair (𝑍, 𝜄), where 𝜄 : 𝑍 → 𝑇𝑋 is a morphism making the following diagram

commute for every 𝑌 :

𝑍 ×𝑇𝑌 𝑇𝑋 ×𝑇𝑌 𝑇 (𝑋 ×𝑇𝑌 )

𝑇𝑋 ×𝑇𝑌 𝑇 2 (𝑋 × 𝑌 )

𝑇 (𝑇𝑋 × 𝑌 ) 𝑇 2 (𝑋 × 𝑌 ) 𝑇 (𝑋 × 𝑌 )

𝜄

𝜄

𝑠𝑡 ′
𝑋,𝑇𝑌

𝑇 (𝑠𝑡𝑋,𝑌 )

𝑠𝑡𝑇𝑋,𝑌 𝜇𝑋×𝑌

𝑇 (𝑠𝑡 ′
𝑋,𝑌
) 𝜇𝑋×𝑌

This definition is the categorification of choosing elements of 𝑇𝑋 that commute over every

element of 𝑇𝑌 , for every 𝑌 . These cones can be naturally organized as a category, by defining it as

the appropriate subcategory of the slice category C/𝑇𝑋 .

Definition F.2 ([7]). A monad 𝑇 : C → C is centralizable if for every object 𝑋 : C, there exists a
terminal central cone on 𝑋 .
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Something quite nice about this definition is that if for every 𝑋 , there is a terminal central

coneZ(𝑋 ), this assignment 𝑋 ↦→ Z(𝑋 ) extends to a commutative submonad of 𝑇 [7]. With this

definition, we can now restate Theorem 4.7 as follows.

Theorem F.3. The center of [0,∞] × 𝑃≤1 is the probability monad 𝑃 .

Proof. For every 𝑋 : 𝜔Qbs, we define 𝜄 (𝜇) = (0, 𝜇). To show that this is indeed a central

cone, we observe that the upper leg of the central cone commutative diagram is the function

𝑓 (𝜇, (𝑟, 𝜈)) = (𝑟, 𝜇 ⊗ 𝜈), where 𝜇 ⊗ 𝜈 is the product distribution on 𝜇 and 𝜈 . A direct calculation

shows that the lower leg is equal to (𝑟, 𝜇 ⊗ 𝜈) as well.
In order to show that it is the terminal object, let 𝜄 : 𝑍 → [0,∞] × 𝑃≤1𝑋 be a central cone. Let

𝑧 : 𝑍 and assume that 𝜄 (𝑧) = (𝑟 ′, 𝜇). The upper leg then becomes (𝑟 + 𝑟 ′𝜈 (𝑌 ), 𝜇 ⊗ 𝜈) while the lower
leg is (𝑟 ′ + 𝑟 𝜇 (𝑋 ), 𝜇 ⊗ 𝜈). Since this equation has to hold for every 𝑟 and 𝜈 , it holds if, and only if,

𝑟 ′ = 0 and 𝜇 (𝑋 ) = 1, i.e. its total mass is 1. Therefore, 𝜄 : 𝑍 → [0,∞] × 𝑃≤1𝑋 factors through the

inclusion 𝑃𝑋 ↩→ [0,∞] × 𝑃≤1𝑋 , concluding the proof. □

F.5 Proof of Theorem 5.9
Proof. The proof follows by showing that there are monad structure morphisms [0,∞] ×
([0, 1] → −) →→ [0,∞] × 𝑃≤1 and 𝜑 : [0,∞] × 𝑃≤1 ↩→ 𝐾[0,∞] . The proof is concluded by the

uniqueness of factorizations.

The first monad morphism is (𝑖𝑑 × 𝜓 ), where 𝜓 is the monad structure morphism ( [0, 1] →
−⊥) →→ 𝑃≤1, and the proof that this transformation is component-wise image-dense follows from

the observation that the product order in 𝜔Qbs is given pairwise and𝜓 is, by assumption, dense in

its image. The monad morphisms axioms follow from:

(𝑖𝑑 ×𝜓 ) (𝜂 (𝑎)) = (𝑖𝑑 ×𝜓 ) (0, 𝜆𝑟 . 𝑎) = (0, 𝛿𝑎) = 𝜂 (𝑎)

(((𝑖𝑑 ×𝜓 ) ◦ 𝑓 )# ◦ (𝑖𝑑 ×𝜓 )) (𝑟, 𝑔) = ((𝑖𝑑 ×𝜓 ) ◦ 𝑓 )# (𝑟,𝜓 (𝑔), (𝜓 ◦ 𝜋2 ◦ 𝑓 )# (𝑔)) =

(𝑟 +
∫
(𝜋1 ◦ 𝑓 ) d(𝜓 (𝑔)), (𝜓 ◦ (𝜋2 ◦ 𝑓 )#)) (𝑔) =

(𝑟 +
∫
(𝜋1 ◦ 𝑓 ◦ 𝑔) d(𝜆), (𝜓 ◦ (𝜋2 ◦ 𝑓 )#) (𝑔)) = ((𝑖𝑑 ×𝜓 ) ◦ 𝑓 #) (𝑟, 𝑔)

The second monad morphism has components 𝜑 (𝑟, 𝜇) = 𝜆𝑓 . 𝑟 +
∫
𝑓 d𝜇. The proof that this is

indeed order reflecting is a direct consequence of 𝑃≤1 ↩→ 𝐾[0,∞] being order reflecting.

The proof that this is indeed a monad morphism follows, once again, from a series of direct

calculations. □

F.6 Proof of Lemma 6.2
Proof. This can be proved by strong induction on the length of the input list. If the list is empty,

then its length is 0 and the diagram commutes. Next, assume that the length is greater than 0. We
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can prove the following program equality:

𝑙𝑒𝑛 ← 𝑙𝑒𝑛𝑔𝑡ℎ 𝑙

𝑟 ← rand 𝑙𝑒𝑛

𝑝𝑖𝑣𝑜𝑡 ← 𝑙 [𝑟 ]

(𝑙1, 𝑙2) ← 𝑏𝑖𝐹𝑖𝑙𝑡𝑒𝑟 (𝜆𝑛 . charge 1;𝑛 ≤ 𝑝𝑖𝑣𝑜𝑡) (drop 𝑙)
𝑙 ′
1
← quicksort 𝑙1

𝑙 ′
2
← quicksort 𝑙2

length (𝑙 ′
1
++ 𝑝𝑖𝑣𝑜𝑡 :: 𝑙 ′

2
)

=

𝑙𝑒𝑛 ← 𝑙𝑒𝑛𝑔𝑡ℎ 𝑙

𝑟 ← rand 𝑙𝑒𝑛

𝑝𝑖𝑣𝑜𝑡 ← 𝑙 [𝑟 ]

charge (𝑙𝑒𝑛 − 1)
(𝑙1, 𝑙2) ← 𝑏𝑖𝐹𝑖𝑙𝑡𝑒𝑟 (𝜆𝑛 . 𝑛 ≤ 𝑝𝑖𝑣𝑜𝑡) (drop 𝑙)

𝑙 ′
1
← quicksort 𝑙1

𝑙 ′
2
← quicksort 𝑙2

length (𝑙 ′
1
++ 𝑝𝑖𝑣𝑜𝑡 :: 𝑙 ′

2
)

Next, we want to consider the interaction of the regular quicksort algorithm and applying the

length function to it. Furthermore, by using the additive properties of the length function and the

strong induction hypotheses, we get the following program equation:

𝑙𝑒𝑛 ← 𝑙𝑒𝑛𝑔𝑡ℎ 𝑙

𝑟 ← rand 𝑙𝑒𝑛

𝑝𝑖𝑣𝑜𝑡 ← 𝑙 [𝑟 ]
charge (𝑙𝑒𝑛 − 1)
(𝑙1, 𝑙2) ← 𝑏𝑖𝐹𝑖𝑙𝑡𝑒𝑟 (𝜆𝑛 . 𝑛 ≤ 𝑝𝑖𝑣𝑜𝑡) (drop 𝑙)

𝑙 ′
1
← quicksort 𝑙1

𝑙 ′
2
← quicksort 𝑙2

length (𝑙 ′
1
++ 𝑝𝑖𝑣𝑜𝑡 :: 𝑙 ′

2
)

=

𝑙𝑒𝑛 ← 𝑙𝑒𝑛𝑔𝑡ℎ 𝑙

𝑟 ← rand 𝑙𝑒𝑛

𝑝𝑖𝑣𝑜𝑡 ← 𝑙 [𝑟 ]
charge (𝑙𝑒𝑛 − 1)
(𝑙1, 𝑙2) ← 𝑏𝑖𝐹𝑖𝑙𝑡𝑒𝑟 (𝜆𝑛 . 𝑛 ≤ 𝑝𝑖𝑣𝑜𝑡) (drop 𝑙)

𝑛1 ← (length 𝑙1)
𝑛2 ← (length 𝑙2)
𝑛′
1
← qckN 𝑛1

𝑛′
2
← qckN 𝑛2

produce (𝑛′
1
+ 1 + 𝑛′

2
)

Since the pivot is chosen uniformly at random, we can deduct denotationally that the following

equations hold:

𝑙𝑒𝑛 ← 𝑙𝑒𝑛𝑔𝑡ℎ 𝑙

𝑟 ← rand 𝑙𝑒𝑛

𝑝𝑖𝑣𝑜𝑡 ← 𝑙 [𝑟 ]
charge (𝑙𝑒𝑛 − 1)
(𝑙1, 𝑙2) ← 𝑏𝑖𝐹𝑖𝑙𝑡𝑒𝑟 (𝜆𝑛 . 𝑛 ≤ 𝑝𝑖𝑣𝑜𝑡) (drop 𝑙)
𝑛1 ← (length 𝑙1)
𝑛2 ← (length 𝑙2)
𝑛′
1
← qckN 𝑛1

𝑛′
2
← qckN 𝑛2

produce (𝑛′
1
+ 1 + 𝑛′

2
)

=

𝑙𝑒𝑛 ← length 𝑙

𝑟 ← rand 𝑙𝑒𝑛

charge (𝑙𝑒𝑛 − 1)
𝑛′′
1
← qckN 𝑟

𝑛′′
2
← qckN (𝑙𝑒𝑛 − 𝑟 − 1)

produce (𝑛′′
1
+ 1 + 𝑛′′

2
)

=
𝑙𝑒𝑛 ← length 𝑙

qckN 𝑙𝑒𝑛

The last equation holds under the inductive hypothesis that the list 𝑙 is non-empty. This concludes

the inductive case and the proof. □
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F.7 Proof of Theorem 5.12
Lemma F.4. The canonical monad morphism 𝑒 : 𝐹 → [0,∞] × 𝑃≤1 is densely strong epic.

Proof. Since the product order is given componentwise, it suffices to show that the components

𝜋1 ◦𝑒 : 𝐹 → [0,∞] and 𝜋2 ◦𝑒 : 𝐹 → 𝑃≤1 are densely strong epic. We start by reasoning about 𝜋1 ◦𝑒 .
Assume without loss of generality that 𝑋 is non-empty and that 𝑥0 ∈ 𝑋 . Let 𝑓 : 𝑅+ → [0,∞] be a
(restricted) element of𝑀[0,∞] which is everywhere finite; this subset is Scott-dense in𝑀[0,∞] . We

define the function𝑔(𝑟 ) = charge ⌊𝑓 (𝑟 )⌋; (charge 0)⊕𝑓 (𝑟 )−⌊ 𝑓 (𝑟 ) ⌋ (charge 1); produce 𝑥0 : R+ → 𝐹𝑋 ,

where ⌊·⌋ is the floor function. By construction, and using the fact that 𝑒 is a monad morphism

that preserves the sampling and cost operations, 𝜋1 ◦ 𝑒 ◦ 𝑔 = 𝑓 and we can conclude that 𝜋1 ◦ 𝑒 is
densely strong epic.

For the function 𝜋2 ◦ 𝑒 , it suffices to use a variation of the argument made in Lemma 4.4 by

Vákár et al. [42], where they prove a similar property but for the monad of measures which are

not-necessarily bounded and an operation for “sampling” from the Lebesgue measure over the real

line. □

We can now conclude our proof of Theorem 5.12.

Proof. Let 𝑇 ↩→ 𝐾[0,∞] be a submonad of 𝐾[0,∞] containing the operations charge and uniform.

By assumptions and the lemma above, we have the following commutative diagram for every 𝑋 .

𝐹𝑋 𝑇𝑋

[0,∞] × 𝑃≤1𝑋 𝐾[0,∞]𝑋

𝑒𝑋

The dashed arrow is defined by the universal property of factorization systems. Since the morphism

[0,∞] × 𝑃≤1𝑋 → 𝐾[0,∞]𝑋 is monic, so is [0,∞] × 𝑃≤1𝑋 → 𝑇𝑋 . □
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