
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Separated and Shared Effects in Higher-Order Languages

ANONYMOUS AUTHOR(S)

Effectful programs interact in ways that go beyond simple input-output, making compositional reasoning

challenging. Existing work has shown that when such programs are “separate”, i.e., when programs do not

interfere with each other, it can be easier to reason about them. While reasoning about separated resources has

been well-studied, there has been little work on reasoning about separated effects, especially for functional,

higher-order programming languages.

We propose two higher-order languages that can reason about sharing and separation for commutative

effects. Our first language _INI has a bunched type system and probabilistic semantics, where the two product

types capture independent and possibly-dependent distributions. Our second language _2
INI

is a two-level,

stratified language, inspired by Benton’s linear-non-linear (LNL) calculus. We motivate this language with

a probabilistic model, but we also provide a general categorical semantics and exhibit a range of concrete

models beyond probabilistic programming. We prove soundness theorems for all of our languages; our general

soundness theorem for our categorical models of _2
INI

uses a categorical gluing construction.

CCS Concepts: • Software and its engineering → General programming languages; • Social and

professional topics→ History of programming languages.

Additional Key Words and Phrases: Probabilistic Programming, Denotational Semantics, Effects, Higher-Order

Languages

ACM Reference Format:

Anonymous Author(s). 2018. Separated and Shared Effects in Higher-Order Languages. Proc. ACM Program.
Lang. 1, CONF, Article 1 (January 2018), 34 pages.

1 INTRODUCTION
A central challenge in the theory of programming languages is to come up with sound and

expressive reasoning principles for effectful programs. In contrast with pure programs, where

different programs can only affect each other at clearly defined interfaces (e.g., the input or output

from a functional call), the interaction between effectful programs can be subtle and difficult to

reason about. To simplify formal analysis, it is highly useful to know when different effectful

computations are separate, i.e., they do not interfere with each other. For instance, in the presence

of effects such as memory allocation or probability, it is useful to know when pointers do not refer

to the same location, or when random quantities must be independent.

Prior Work: Reasoning About Resource Separation. While separated effects have received relatively

little attention in the literature, there is a long line of work on reasoning about separation of

resources [O’Hearn et al. 2001; Pym et al. 2004]. The concept of resource is ubiquitous in Computer

Science and usually manifests itself when effectful programs interact with the external world.

For example, when programming with memory allocation, the heap is a kind of resource; when

programming with probabilistic sampling, randomness can be seen as a resource.

In some cases, it is useful to ensure that computations access resources separately. When pro-

gramming with pointers, different pointers that alias refer to the same address, making it difficult to

reason about updates to the heap; requiring that programs do not alias can make formal verification

more modular and compositional. In the example of probabilistic effects, separation of resources

corresponds to probabilistic independence, while general joint distributions can share resources.

Just like for other notions of separation, independence can simplify reasoning about programs. For

instance, if two parts of a program produce independent distributions, their joint distribution will

2018. 2475-1421/2018/1-ART1 $15.00

https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Anon.

only depend on their individual probabilities—there are no unexpected probabilistic interaction

between the two parts. Independence can also be an interesting property to verify; for instance, in

cryptographic protocols, basic security properties can be stated in terms of independence [Barthe

et al. 2019]. Prior work has developed program logics that can about independence in the context

of a first-order, imperative language [Barthe et al. 2019]. Unfortunately, it is unclear how to capture

independence in higher-order languages.

Our Work. We aim to develop a higher-order language that can reason about shared and separated

commutative effects in a variety of contexts. The closest work in this area is the bunched calcu-

lus [O’Hearn 2003], the Curry-Howard correspondent of the logic of Bunched Implications [O’Hearn

and Pym 1999]. While O’Hearn [2003] gives a presheaf model for the language and develops a con-

crete model for reasoning about memory-manipulating programs, other concrete models are harder

to come by. Indeed, there are no known models for the bunched calculus that can accommodate

probability, or monadic effects.

Throughout this work we will use probabilistic effects as our guiding example. We start by using

a resource interpretation of probabilistic samples to establish independence: if two computations

use disjoint resources (i.e., probabilistic samples), then they produce independent random quantities.

Our perspective yields two substructural, higher-order languages that can reason about probabilistic

independence. Both languages have a product type constructor ⊗ that enforces independence, in

the sense that closed programs of type N ⊗ N should be denoted by independent distributions.

Our first language _INI is a variation of the bunched calculus of O’Hearn [2003], i.e. it has two

distinct product and arrow types: the ⊗ type constructor enforces that the components of the pair

do not share any resources, while the × type constructor allows the components to share resources.

Intuitively, ⊗ captures pairs of independent values, while × captures pairs of general, possibly-

dependent values. We give a denotational semantics to _INI and prove its soundness theorem: the

product ⊗ ensures probabilistic independence.

While conceptually clean, _INI has limited expressivity. For instance, extending it with sum

types breaks the soundness property, and the soundness theorem for the probabilistic model is

intricate and difficult to generalize to other effects. In order to mitigate these issues, we define a

richer, two-level language _2
INI

, where the two product types of _INI are restricted to different layers.

Intuitively, one layer allows computations that share randomness, while the other layer prevents

computations from sharing randomness. To enable the layers to interact, the independent language

has a modality that allows to soundly import programs written in the shared language. This design

is inspired by recent work by Azevedo de Amorim [2023], who proposed a two-level language

to combine the sampling and linear operator semantics of probabilistic programming languages.

We show that _2
INI

supports two different kinds of sum types: a “shared” sum in the sharing layer,

and a “separated” sum in the independent layer. We give a denotational semantics for _2
INI
, prove

soundness, and give translations of two fragments of _INI into _
2

INI
.

Categorical Semantics and Concrete Models. In order to show the generality of _2
INI

and how it

connects to other classes of effects, we propose a categorical semantics for _2
INI

and prove a general

soundness theorem of our type system. Then, we present concrete models of our language inspired

by a variety of existing effectful programming languages.

• Linear logic. Models of linear logic have been used to give semantics to probabilistic

languages [Azevedo de Amorim and Kozen 2022; Danos and Ehrhard 2011; Ehrhard et al.

2017]. We show that pairing these models with categories of Markov kernels yields models

for _2
INI

. Our soundness theorem guarantees probabilistic independence; as far as we know,

our method is the first to ensure independence in these models.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

1:3

• Distributed programming. Next, we develop a relational model of _2
INI

for distributed

programming. In this model, programs describe the implementation and communication

patterns of multiple agents. Our soundness theorem shows that global programs of type

𝜏1 ⊗ 𝜏2 can be compiled into two local programs that execute independently. This property

is reminiscent of projection properties in choreographic languages [Montesi 2014].

• Name generation. Programming languages with name generation include a primitive

that generates a fresh identifier. In some contexts, it is important to control when and how

many times a name is generated; for instance, reusing a nonce value (“number once”) in

cryptographic applications may make a protocol vulnerable to replay attacks. We define a

model of _2
INI

based on name generation. Our soundness theorem states that the connective

⊗ enforces disjointness of the names used in each component.

• Commutative effects. We generalize the name generation and finite distribution models

by noting that they are both example of monadic semantics of commutative effects. Under

mild assumptions, every commutative monad gives rise to a model of _2
INI
.

• Bunched and separation logics. A long line of work uses bunched logics to reason

about separation of resources [O’Hearn and Pym 1999; O’Hearn et al. 2001]. We show

that all models of affine bunched logics are also models of _2
INI
, but not vice-versa. To

illustrate, we revisit O’Hearn’s SCI+, a bunched type system for programming with memory

allocation [O’Hearn 2003]. We define a model of _2
INI

based on SCI+, and give a sound

translation of _2
INI

into SCI+.

The diversity of models suggests that _2
INI

is a suitable framework to reason about separation and

sharing in higher-order programs with commutative effects.

Outline. After reviewing mathematical preliminaries (§2), we present our main contributions:

• First, we define a bunched, higher-order probabilistic _-calculus called _INI, with types that

can capture probabilistic independence and dependence. We give a denotational semantics

to our language and prove that ⊗ captures probabilistic independence (§3).

• Next, we define a two-level, higher-order probabilistic _-calculus called _2
INI

. This language

combines an independent fragment and a sharing fragment with two distinct sum types: an

independent sum, and a sharing sum. We give a probabilistic semantics and prove that ⊗
captures probabilistic independence; we also embed two fragments of _INI into _

2

INI
(§4).

• Generalizing, we propose a categorical semantics for _2
INI

. Our semantics is a weaker version

of Benton’s linear/non-linear (LNL) model for linear logic [Benton 1994] and of the calculus

proposed by Azevedo de Amorim [2023] (§5.1).

• We present a range of models for _2
INI

, described above. The soundness property of our type

system ensures natural notions of independence in each of these models (§5.2).

• Finally, we prove a general soundness theorem: every program of type 𝜏1⊗𝜏2 can be factored
as two programs 𝑡1 and 𝑡2 of types 𝜏1 and 𝜏2, respectively. Our proof relies on a categorical

gluing argument (§6).

We survey related work in (§7), and conclude in (§8).

2 BACKGROUND
2.1 Monads and their algebras

We will assume knowledge of basic concepts from category theory, including functors, products,

coproducts, Cartesian closed categories, and symmetric monoidal closed categories (SMCC). The

interested reader can consult Leinster [2014]; Mac Lane [2013] for good introductions to the subject.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Anon.

Monads. Following seminal work by Moggi [1991], effectful computations can be given a seman-

tics via monads. A monad over a category C is a triple (𝑇, `, [) such that 𝑇 : C→ C is a functor,

`𝐴 : 𝑇 2𝐴 → 𝑇𝐴 and [𝐴 : 𝐴 → 𝑇𝐴 are natural transformations such that `𝐴 ◦ `𝑇𝐴 = `𝐴 ◦ 𝑇 `𝐴,
𝑖𝑑𝐴 = `𝐴 ◦𝑇[𝐴 and 𝑖𝑑𝐴 = `𝐴 ◦ [𝑇𝐴.

Another useful, and equivalent, definition of monads requires a natural transformation [𝐴 and a

lifting operation (−)∗ : C(𝐴,𝑇𝐵) → C(𝑇𝐴,𝑇𝐵) such that objects from C and morphisms 𝐴→ 𝑇𝐵

form a category, usually referred to as the Kleisli category C𝑇 . This category has the same objects as

C, and has 𝐻𝑜𝑚CT (𝐴, 𝐵) = 𝐻𝑜𝑚C (𝐴,𝑇𝐵). Kleisli categories are frequently used to give semantics

to effectful programming languages.

Monad algebras. Given a monad 𝑇 , a 𝑇 -algebra is a pair (𝐴, 𝑓 : 𝑇𝐴→ 𝐴) such that 𝑖𝑑𝐴 = 𝑓 ◦ [𝐴
and 𝑓 ◦ `𝐴 = 𝑓 ◦𝑇 𝑓 . A 𝑇 -algebra morphism ℎ : (𝐴, 𝑓) → (𝐵,𝑔) is a C morphism ℎ : 𝐴 → 𝐵 such

that 𝑔 ◦𝑇ℎ = ℎ ◦ 𝑓 . 𝑇 -algebras and morphisms form a category C𝑇
, the Eilenberg-Moore category.

2.2 Probability Theory
We will use probabilistic programs and effects to illustrate our higher-order languages.

Definition 2.1. A distribution over a set 𝑋 is a function ` : 𝑋 → [0, 1] such that

∑
𝑥 ∈𝑋 ` (𝑥) = 1.

Joint distributions are distributions over sets 𝑋 × 𝑌 . Given a joint distribution ` over 𝑋 × 𝑌 , its
marginal distribution over 𝑋 is defined as `𝑋 (𝑥) =

∑
𝑦∈𝑌 ` (𝑥,𝑦) with and the second marginal `𝑌

being similarly defined. Furthermore, given a distribution `1 over 𝑋 and a distribution `2 over 𝑌 ,

we define `1 ⊗ `2 (𝑥,𝑦) = `1 (𝑥)`2 (𝑦)

Definition 2.2. A distribution ` over 𝑋 × 𝑌 is probabilistically independent if it is a product of its
marginals `𝑋 and `𝑌 , i.e., ` (𝑥,𝑦) = `𝑋 (𝑥) · `𝑌 (𝑦), 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 .

A probability monad can be defined for Set. Given a set 𝑋 , let 𝐷𝑋 be the set of functions

` : 𝑋 → [0, 1] which are non-zero on finitely many values, and satisfy

∑
𝑥 ∈𝑠𝑢𝑝𝑝 (`) ` (𝑥) = 1 [Fritz

2020]. The unit of the monad is given by 𝛿 (𝑎, 𝑏) = 1 iff 𝑎 = 𝑏 and 0 otherwise, while the bind is

defined as bind(𝑓) (`) = ∑
𝑥 ∈𝑋 𝑓 (𝑥)` (𝑥).

3 A LINEAR LANGUAGE FOR INDEPENDENCE
To motivate our language for separated and shared effects, we will focus on one effect: proba-

bilistic sampling. We will build up two higher-order languages where types can ensure probabilistic

independence, the natural notion of separation for probabilistic effects.

3.1 Independence Through Linearity
In many probabilistic programs, independent quantities are initially generated through sampling

instructions. Then, a simple way to reason about independence of a pair of random expressions is

to analyze which sources of randomness each component uses: if the two expressions use distinct

sources of randomness, then they are independent; otherwise, they are possibly-dependent.

For instance, consider a simply typed first-order call-by-value language with a primitive ⊢ coin : B
that flips a fair coin. The program

let 𝑥 = coin in let 𝑦 = coin in (𝑥,𝑦)

flips two fair coins and pairs the results. This program will produce a probabilistically independent

distribution, since 𝑥 and 𝑦 are distinct sources of randomness. On the other hand, the program

let 𝑥 = coin in (𝑥, 𝑥)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

1:5

Variables 𝑥,𝑦, 𝑧

Context Shift Variables 𝑟, 𝑠

Types 𝜏 ::= B | 𝜏 × 𝜏 | 𝜏 ⊗ 𝜏 | 𝜏 ⊸ 𝜏 | 𝜏 → 𝜏

Expressions 𝑡,𝑢 ::= 𝑥 | 𝑏 ∈ B | coin | (𝑡,𝑢) | 𝜋𝑖 𝑡 | 𝑡 ⊗ 𝑢 | let 𝑥 ⊗ 𝑦 = 𝑡 in 𝑢
| _𝑥 . 𝑡 | 𝑡 𝑢 | _𝑠𝑥 . 𝑡 | 𝑡 @ 𝑢 | 𝑟 [𝑡] | 𝜌𝑟 .𝑡

Intuitionistic Contexts Γ ::= ·𝐼 | 𝑥 : 𝜏 | Γ, Γ | 𝑟 [Δ]
Separated Context Δ ::= ·𝑆 | 𝑥 : 𝜏 | Δ;Δ | 𝑟 [Γ]

Fig. 1. Types and Terms: _INI

does not produce an independent distribution: the two components are always equal, and hence

perfectly correlated. These principles are a natural fit for substructural type systems, which control

when variables can be shared. To investigate this idea, we develop a language _INI with a bunched

type system that can reason about probabilistic independence.

3.2 Introducing the Language _INI
The language _INI can be seen as an effectful version of the 𝛼_-calculus [O’Hearn 2003], a calculus

based on the proof theory of the logic of bunched implications. BI was developed for reasoning

about sharing and separation of resources like pointers to a heap memory [O’Hearn et al. 2001], or

permissions to enter some critical section in concurrent code [O’Hearn 2007]. A distinct feature of

the 𝛼_-calculus is that contexts are trees (so-called bunches) rather than lists [O’Hearn 2003].

Syntax. Figure 1 presents the syntax of types and terms. Along with base types (B), there are two
product types: we view × as the shared, or possibly-dependent product, while ⊗ is the independent

product. The language is higher-order, with a linear arrow type ⊸ and an intuitionistic one→.

The corresponding term syntax is fairly standard. We have variables, numeric constants, and

primitive distributions (coin). The two kinds of products can be created from two kinds of pairs, and

eliminated using projection and let-binding, respectively. Finally, we have the usual _-abstractions

and applications, their main difference being that⊸ cannot share the context while→ can. Our

examples will use the standard syntactic sugar let 𝑥 = 𝑡 in 𝑢 ≜ (_𝑥 .𝑢) 𝑡 , where we use the

linear expressions. The most unusual aspect of this calculus is the mutually recursive grammar

for contexts, which was first developed by [Krishnaswami 2011] with the goal of making the

structural rules in 𝛼_-calculus admissible. In order to recover the full expressivity of the 𝛼_-calculus

you need the context modalities 𝑟 [Γ] and 𝑟 [Δ], where 𝑟 ranges over a set of symbols, and the

introduction/elimination programs 𝑟 [𝑡] and 𝜌𝑟 . 𝑡 , respectively.

Type system. Figure 2 shows the typing rules for _INI; the rules are standard from bunched logic.

There are two variable rules and both are affine: in separated contexts Δ variables may be dropped

but not freely duplicated, while in shared contexts Γ variables may be dropped and duplicated. For

the sharing product ×, the introduction rule × Intro shares the context across the premises: both

components can use the same variables. Either component can be projected out of these pairs (×
Elim𝑖). For the independent product ⊗, in contrast, the introduction rule ⊗ Intro requires both

premises to use disjoint contexts. Thus, the components cannot share variables. Tensor pairs are

eliminated by a let-pair construct that consumes both components (⊗ Elim). In substructural type

systems, × is called an additive product, while ⊗ is called a multiplicative product. The abstraction
and application rules follow the same pattern as the products, where one is multiplicative (⊸) and

the other is additive (→). Another key difference between them is that they extend each context

differently. The multiplicative abstraction extends the (separated) context using the separated

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Anon.

Const

· ⊢ 𝑏 : B

Coin

· ⊢ coin : B

Var𝐼

Γ, 𝑥 : 𝜏 ⊢ 𝑥 : 𝜏

Var𝑆

Δ;𝑥 : 𝜏 ⊢ 𝑥 : 𝜏

× Intro

Γ ⊢ 𝑡1 : 𝜏 Γ ⊢ 𝑡2 : 𝜏2
Γ ⊢ (𝑡1, 𝑡2) : 𝜏1 × 𝜏2

× Elim𝑖

Γ ⊢ 𝑡 : 𝜏1 × 𝜏2
Γ ⊢ 𝜋𝑖 𝑡 : 𝜏𝑖

⊗ Intro

Δ1 ⊢ 𝑡1 : 𝜏 Δ2 ⊢ 𝑡2 : 𝜏2
Δ1;Δ2 ⊢ 𝑡1 ⊗ 𝑡2 : 𝜏1 ⊗ 𝜏2

⊗ Elim

Δ1 ⊢ 𝑡 : 𝜏1 ⊗ 𝜏2 Δ2, 𝑥 : 𝜏1, 𝑦 : 𝜏2 ⊢ 𝑢 : 𝜏

Δ1;Δ2 ⊢ let 𝑥 ⊗ 𝑦 = 𝑡 in 𝑢 : 𝜏

Abstraction

Δ;𝑥 : 𝜏1 ⊢ 𝑡 : 𝜏2
Δ ⊢ _𝑥 . 𝑡 : 𝜏1 ⊸ 𝜏2

Application

Δ1 ⊢ 𝑡 : 𝜏1 ⊸ 𝜏2 Δ2 ⊢ 𝑢 : 𝜏1

Δ1;Δ2 ⊢ 𝑡 𝑢 : 𝜏2

Shared Abstraction

Γ, 𝑥 : 𝜏1 ⊢ 𝑡 : 𝜏2
Γ ⊢ _𝑠𝑥 . 𝑡 : 𝜏1 → 𝜏2

Shared Application

Γ ⊢ 𝑡 : 𝜏1 → 𝜏2 Γ ⊢ 𝑢 : 𝜏1

Γ ⊢ 𝑡 @ 𝑢 : 𝜏2

Shr. Region Elim

𝑟 [Γ] ⊢ 𝑡 : 𝜏
Γ ⊢ 𝜌𝑟 .𝑡 : 𝜏

Sep. Region Elim

𝑟 [Δ] ⊢ 𝑡 : 𝜏
Δ ⊢ 𝜌𝑟 .𝑡 : 𝜏

Shr. Region Intro

Γ ⊢ 𝑡 : 𝜏
𝑟 [Γ] ⊢ 𝑟 [𝑡] : 𝜏

Sep. Region Intro

Δ ⊢ 𝑡 : 𝜏
Γ, 𝑟 [Δ] ⊢ 𝑟 [𝑡] : 𝜏

Fig. 2. Typing Rules: _INI

extension (;) while the additive abstraction extends the (shared) context with the shared extension

(,). Note that there are two distinct empty contexts, ·𝐼 is the empty intuitionistic context while ·𝑆 is

the empty separated context.

The most unusual rules are the context labeling ones. Their purpose is to guarantee that shared

contexts can only be split when producing shared types, and similar to separated contexts. For

example, note that the ⊗ introduction rule can only be applied when the context is separated,

meaning that it cannot, for instance, be used to split the shared context 𝑥 : 𝐴,𝑦 : 𝐵. These rules

come in pairs and they provide a way of creating a new modal context with the introduction rules

(Sep/Shr Region Intro) and opening a modal context with the elimination rule (Sep/Shr Region

Elim).

3.3 Denotational Semantics
We can give a semantics to this language using the category Set and the finite probability monad

𝐷 . From left to right and top to bottom, Figure 3 defines the semantics of types, contexts, and typing

derivations producing well-typed terms.

For types, we interpret both product types as products of sets. Arrow types are interpreted as

the set of Kleisli arrows, i.e., maps J𝜏1K→ 𝐷 J𝜏2K. Contexts are interpreted as products of sets.

Well-typed terms are interpreted as Kleisli arrows. We briefly walk through the term semantics,

which is essentially the same as the Kleisli semantics proposed by Moggi [1991]. Variables are

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

1:7

JBK = B

J𝜏 × 𝜏K = J𝜏K × J𝜏K
J𝜏 ⊗ 𝜏K = J𝜏K × J𝜏K

J𝜏1 ⊸ 𝜏2K = J𝜏1K→ 𝐷 J𝜏2K
J𝜏1 → 𝜏2K = J𝜏1K→ 𝐷 J𝜏2K

J·𝐼 K𝐼 = J·𝑆K𝑆 = 1

J𝑥 : 𝜏K𝐼 = J𝑥 : 𝜏K𝑆 = J𝜏K
JΓ1, Γ2K𝐼 = JΓ1K𝐼 × JΓ2K𝐼
J𝑟 [Δ]K𝐼 = JΔK𝑆

JΔ1;Δ2K𝑆 = JΔ1K𝑆 × JΔ2K𝑆
J𝑟 [Γ]K𝑆 = JΓK𝐼

JΓ ⊢ 𝑡 : 𝜏K : JΓK𝐼 → 𝐷 J𝜏K
JΔ ⊢ 𝑡 : 𝜏K : JΔK𝑆 → 𝐷 J𝜏K

J𝑥K (𝛾, 𝑣𝑥) = return 𝑣𝑥

J𝑏K (∗) = return 𝑏

JcoinK (∗) = 1

2

(𝛿tt + 𝛿ff)

J(𝑡1, 𝑡2)K (𝛾) = 𝑥 ← J𝑡1K (𝛾);𝑦 ← J𝑡2K (𝛾); return (𝑥,𝑦)
J𝜋𝑖 𝑡K (𝛾) = (𝑥,𝑦) ← J𝑡K (𝛾); return 𝑥

J𝑡1 ⊗ 𝑡2K (𝛾1, 𝛾2) = 𝑥 ← J𝑡1K (𝛾1);𝑦 ← J𝑡2K (𝛾2); return (𝑥,𝑦)
Jlet 𝑥 ⊗ 𝑦 = 𝑡 in 𝑢K (𝛾1, 𝛾2) = (𝑥,𝑦) ← J𝑡K (𝛾1); J𝑢K (𝛾2, 𝑥,𝑦)

J_𝑥 . 𝑡K (𝛾) = return (_𝑥 . J𝑡K (𝛾))
J𝑡 𝑢K (𝛾1, 𝛾2) = 𝑓 ← J𝑡K (𝛾1);𝑥 ← J𝑢K (𝛾2); 𝑓 (𝑥)
J_𝑠𝑥 . 𝑡K (𝛾) = return (_𝑥 . J𝑡K (𝛾))
J𝑡 @ 𝑢K (𝛾) = 𝑓 ← J𝑡K (𝛾);𝑥 ← J𝑢K (𝛾); 𝑓 (𝑥)

J𝑟 [𝑡]K (𝛾) = J𝑡K
J𝜌𝑟 . [𝑡]K (𝛾) = J𝑡K

Fig. 3. Denotational Semantics: _INI

interpreted using the unit of the monad, which maps a value 𝑣 to the point mass distribution 𝛿𝑣 .

Coins are interpreted as the fair convex combination of two point mass distributions over tt and ff.
The rest of the constructs involve sampling, which is semantically modeled by composition of

Kleisli morphisms. We use monadic arrow notation to denote Kleisli composition, i.e., 𝑥 ← 𝑓 ;𝑔 ≜
𝑔∗ ◦ 𝑓 . The two pair constructors have the same semantics: we sample from each component, and

then pair the results. The projections for × computes the marginal of a joint distribution, while let-

binding for ⊗ samples from the pair 𝑡 and then uses the sample in the body 𝑢. Lambda abstractions

are interpreted as point mass distributions, while applications are interpreted as sampling the

function, sampling the argument, and then applying the first sample to the second one.

The modal context rules are, semantically, not interesting. Their purpose is to guarantee that

shared and separated contexts are used and appended appropriately, which plays no role at the

semantic level.

Example 3.1 (Correlated pairs). It may seem as if there is no way of creating non-independent

pairs, since the semantics for both kinds of pairs samples each component independently. However,

consider the program let 𝑥 = coin in (𝑥, 𝑥). By unfolding the definitions, its semantics is

𝑥 ← 1

2

(𝛿0 + 𝛿1);𝑦 ← 𝛿𝑥 ; 𝑧 ← 𝛿𝑥 ;𝛿 (𝑦,𝑧) = 𝑥 ← 1

2

(𝛿0 + 𝛿1);𝛿 (𝑥,𝑥) =
1

2

(𝛿 (0,0) + 𝛿 (1,1)).

The resulting samples are perfectly correlated, not independent.

Example 3.2 (Independent pairs are correlated pairs). We now illustrate show to use the modal

syntax by writing a program showing that independent distributions are also possibly-dependent

distributions in _INI: · ⊢ _𝑧. let 𝑥 ⊗ 𝑦 = 𝑧 in 𝜌𝑟 . (𝑟 [𝑥], 𝑟 [𝑦]) : 𝜏1 ⊗ 𝜏2 ⊸ 𝜏1 × 𝜏2.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Anon.

3.4 Soundness
The type system of _INI guarantees that ⊗ enforces probabilistic independence. Concretely, if

· ⊢ 𝑡 : 𝜏1 ⊗ 𝜏2 is well-typed, then J𝑡K (∗) is an independent probability distribution over J𝜏1K × J𝜏2K.
We show this soundness theorem by constructing a logical relation R𝜏 ⊆ 𝐷 (J𝜏K), defined as:

RB = 𝐷 (B)
R𝜏1⊗𝜏2 = {`1 ⊗ `2 ∈ 𝐷 (J𝜏1K × J𝜏2K) | `𝑖 ∈ R𝜏𝑖 }
R𝜏1×𝜏2 = {` ∈ 𝐷 (J𝜏1K × J𝜏2K) | 𝜋𝑖 (`) ∈ R𝜏𝑖 for 𝑖 ∈ {1, 2}}
R𝜏1⊸𝜏2 = {` ∈ 𝐷 (J𝜏1K→ 𝐷 (J𝜏2K)) | ∀` ′ ∈ R𝜏1 , 𝑥 ← ` ′; 𝑓 ← `; 𝑓 (𝑥) ∈ 𝑅𝜏2 }
R𝜏1→𝜏2 = {` ∈ 𝐷 (J𝜏1K→ 𝐷 (J𝜏2K)) | ∀` ′ ∈ 𝐷 (𝜏1 × (𝜏1 → 𝐷 (𝜏2)))

` ′
1
∈ R𝜏1 ∧ ` ′

2
= ` ⇒ (𝑥, ℎ) ← ` ′;ℎ(𝑥) ∈ 𝑅𝜏2 }.

Logical relations for contexts Γ and Δ can be defined as:

R · = 1

R𝑥 :𝜏 = R𝜏
RΓ1,Γ2 = {` ∈ 𝐷 (JΓ1K × JΓ2K) | 𝜋𝑖 (`) ∈ RΓ𝑖 }
R𝑟 [Δ] = RΔ

R · = 1

R𝑥 :𝜏 = R𝜏
RΔ1;Δ2

= {`1 ⊗ `2 ∈ 𝐷 (JΔ1K × JΔ2K) | `𝑖 ∈ RΔ𝑖
}

R𝑟 [Γ] = RΓ

Theorem 3.3. If Γ ⊢ 𝑡 : 𝜏 and ` ∈ RΓ then (𝑥 ← `; J𝑡K (𝑥)) ∈ R𝜏 .

Proof. The proof follows by induction on the derivation of Γ ⊢ 𝑡 : 𝜏 . Most cases follow by

simply using the induction hypothesis. The exception is the Shared Abstraction case. While the

logical relations for the shared arrow uses joint distributions over the input space and the function

space, the induction hypothesis is only valid for joint distributions over the extended context.

We solve this by using disintegration, which is a construction that given ` ∈ 𝐷 (𝐴 × 𝐵) and
a ∈ 𝐷 (𝐵), outputs a function 𝑓 : 𝐵 → 𝐷 (𝐴) such that ` = 𝑏 ← a ;𝑎 ← 𝑓 (𝑏); return (𝑎, 𝑏). The full
proof can be found in Appendix A.

□

Corollary 3.4. If · ⊢ 𝑡 : 𝜏1 ⊗ 𝜏2 then J𝑡K (∗) is an independent probability distribution over J𝜏1K× J𝜏2K.

Note that even though the soundness property expressed by the corollary above only concerns

closed programs of type 𝜏1 ⊗ 𝜏2, the full soundness theorem is much more general than that. Indeed,

the soundness theorem implies properties about the semantics of every program Γ ⊢ 𝑡 : 𝜏 . For

instance, if Γ ⊢ 𝑡 : B, then J𝑡K can be any Kleisli arrow. If, however, Γ ⊢ 𝑡 : B⊗B, then J𝑡K is a Kleisli
arrow that maps any joint distribution over Γ in RΓ to an independent distribution over B × B.

Constants. An indirect consequence of this theorem is that it provides a blueprint of when it is

sound to add a constant or base type to the language. Given a base type 𝜎 that has an interpretation

in the Kleisli semantics, you can define R𝜎 = 𝐷 (J𝜎K). Furthermore, If you want to soundly add

an operation Γ ⊢ op : 𝜏 you must pick a semantics JopK such that for every distribution ` ∈ RΓ ,

𝛾 ← `; JopK (𝛾) ∈ R𝜏 . In particular, it is sound to add any operation to the shared fragment of

the language, i.e. the intuitionistic sublanguage of _INI, while one must be careful when adding

operations to the substructural fragment of _INI, as to not break the logical relation invariant.

3.5 Shortcomings
We finish this section by noting that even though _INI is the first higher-order calculus that can

reason about independence properties of programs, it still has a couple of shortcomings. While

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

1:9

the intuitionistic fragment can be easily made complete with respect to the Kleisli semantics,

if-statements and sum types are still problematic. Consider the simple program:

if coin then tt ⊗ tt else ff ⊗ ff

Operationally, this probabilistic program flips a fair coin and outputs a pair with two copies of the

result, tt⊗tt or ff ⊗ff. Since tt and ff are constants they do not share any variables, so both branches

can be given type B ⊗ B and a standard case analysis rule would assign the whole program B ⊗ B.
However, this extension would break soundness (theorem 3.3): the pair is not probabilistically

independent because its components are always equal to each other.

The second problem with _INI is that the proof of Theorem 3.3 does not seem to scale beyond

probabilistic effects, since the shared abstraction inductive case relies on disintegration. Furthermore,

it is unclear how to scale this proof to accommodate even continuous probability distributions, where

the existence of disintegration is much less straight-forward than in the discrete case [Dahlqvist

et al. 2018].

4 A TWO-LEVEL LANGUAGE FOR INDEPENDENCE
The substructural type system of _INI can distinguish between independent and possibly depen-

dent random quantities, but the language is not as expressive as we would like, as explained in

the previous section. In this section we introduce a stratified, two-level language _2
INI

that resolves

these problems. Finally, we show how to embed two fragments of _INI into _
2

INI
.

4.1 The Language _2INI: Syntax, Typing Rules and Semantics
The stratified design of _2

INI
is guided by a simple observation about products, sums, and dis-

tributions, which might be of more general interest. In _INI, the product types correspond to two

distinct ways of composing distributions with products: the sharing product 𝜏1 × 𝜏2 corresponds to
distributions of products,𝑀 (𝜏1 × 𝜏2), while the separating product 𝜏1 ⊗ 𝜏2 corresponds to products of
distributions,𝑀𝜏1 ×𝑀𝜏2.

Similarly, there are twoways of combining distributions and sums: distributions of sums,𝑀 (𝜏1+𝜏2),
and sums of distributions,𝑀𝜏1 +𝑀𝜏2. We think of the first combination as a sharing sum, since the

distribution can place mass on both components of the sum. In contrast, the second combination is

a separating sum, since the distribution either places all mass on 𝜏1 or all mass on 𝜏2.

Finally, there are interesting interactions between sharing and separating, sums and products.

For instance, the problematic sum example we saw above performs case analysis on coin—a sharing
sum, because it has some probability of returning true and some probability of returning false—but

produces a separating product B ⊗ B. If we instead perform case analysis on a separating sum, then

the program either always takes the first branch or always takes the second branch, and now there

is no problem with producing a separating product.

These observations lead us to design a two-level language, where one layer includes the sharing

connectives and the other layer includes the separating connectives. We call this language _2
INI
,

where INI stands for independent/non-independent.

Syntax. The program and type syntax of _2
INI
, summarized in Figure 4, is stratified into two

layers: a non-independent (NI) layer, and an independent (I) layer. We will color-code them: the

NI-language will be orange, while the I-language will be purple.

The NI layer has base, product (×), and sum types (+). The language is mostly standard: we have

variables along with the usual pairing and projection constructs for products, and injection and

case analysis constructs for sums. The NI layer does not have arrows, but it does allow let-binding.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Anon.

The I-layer is quite similar to _INI: it has its own product (⊗) and sum (⊕) types, and a linear

arrow type (⊸). The typeM(𝜏) brings a type from the NI-layer into the I-layer. The language

is also fairly standard, with constructs for introducing and eliminating products and sums, and

functions and applications. The last construct (sample 𝑡 as 𝑥 in𝑀) is from [Azevedo de Amorim

2023]: it allows the two layers to interact. Here, 𝑡 and 𝑥 are two (possibly empty) lists of the same

length.

Intuitively, the NI-language allows sharing while the I-language disallows sharing. Each language

has its own sum type, a sharing and separated sum, respectively, each of which interacts nicely

with its own product type. TheM modality can be thought of as an abstraction barrier between

both languages that enables the manipulation of shared programs in a separating program while

not allowing its sharing to be inspected, except when producing another boxed term.

Variables 𝑥,𝑦, 𝑧

NI-types 𝜏 ::= B | 𝜏 × 𝜏 | 𝜏 + 𝜏
I-types 𝜏 ::= 𝜏 ⊗ 𝜏 | 𝜏 ⊕ 𝜏 | 𝜏 ⊸ 𝜏 | M(𝜏)
NI-expressions 𝑀, 𝑁 ::= 𝑥 | 𝑏 ∈ B | (𝑀, 𝑁) | 𝜋𝑖 𝑀 | ini t

| case 𝑡 of (|in1𝑥 ⇒ 𝑢1 | in2𝑥 ⇒ 𝑢2) | let 𝑥 = 𝑀 in 𝑁

I-expressions 𝑡,𝑢 ::= 𝑥 | 𝑡 ⊗ 𝑢 | let 𝑥 ⊗ 𝑦 = 𝑡 in 𝑢 | ini t
| case 𝑡 of (|in1𝑥 ⇒ 𝑢1 | in2𝑥 ⇒ 𝑢2) | _𝑥. 𝑡 | 𝑡 𝑢 | sample 𝑡 as 𝑥 in𝑀

NI-contexts Γ ::= 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛
I-contexts Γ ::= 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛

Fig. 4. Types and Terms: _2INI

Typing rules. The typing rules of _2
INI

are presented in Figure 5. We have two typing judgments

for the two layers; we use subscripts on the turnstiles to indicate the layer. We start with the first

group of typing rules, for the sharing (NI) layer. These typing rules are entirely standard for a

first-order language with products and sums. Note that all rules allow the context to be shared

between different premises, differently from _INI, which has both multiplicative and additive rules.

The second group of typing rules assigns types to the independent (I) layer. These rules are the

standard rules for multiplicative linear logic , and are almost identical to the linear fragment of

_INI. Unlike before, however, the rules treat variables linearly, and do not allow sharing variables

between different premises. The rules for the sum 𝜏1 ⊕ 𝜏2 are new. Again, the elimination (Case)

rule does not allow sharing variables between the guard and the body.

The final rule, Sample, is the interaction rule between the two languages. The first premise

is from the sharing (NI) language, where the program 𝑀 can have free variables 𝑥1, . . . , 𝑥𝑛 . The

rest of the premises are from the independent (I) language, where linear programs 𝑡𝑖 have boxed

typeM𝜏𝑖 . The conclusion of the rule combines programs 𝑡𝑖 with 𝑀 , producing an I-program of

boxed type. Intuitively, this rule allows a program in the sharing language to be imported into the

linear language. Operationally, sample 𝑡 as 𝑥 in𝑀 constructs a distribution 𝑡 using the independent

language, samples from it and binds the sample to 𝑥 in the shared program𝑀 , and finally boxes

the result into the linear language.

Probabilistic Semantics. To keep the presentation concrete, in this section we will work with a

concrete semantics motivated by probabilistic independence, where programs are probabilistic

programs with discrete sampling and we add a fair coin primitive · ⊢𝑁𝐼 coin : B. In the next section,

we will present the general categorical semantics of _2
INI

and consider other models.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

1:11

The probabilistic semantics for _2
INI

is defined in Figure 6. For the NI-layer, we use the same

semantics of _INI, i.e., well-typed programs are interpreted as Kleisli arrows for the finite distribution

monad 𝐷 . The Kleisli category Set𝐷 has sets as objects, so we may simply define the semantics of

each type to be a set. It is also known that Set has products and coproducts, which can be used to

interpret well-typed programs in NI.

For the 𝐼 -language, we use the category of algebras for the finite distribution monad 𝐷 and

plain maps, S̃et𝐷 . Concretely, its objects are pairs (𝐴, 𝑓), where 𝑓 is a 𝐷-algebra, and a morphism

(𝐴, 𝑓) → (𝐵,𝑔) is a function 𝐴→ 𝐵. Given two objects (𝐴, 𝑓) and (𝐵,𝑔) we can define a product

algebra over the set 𝐴 × 𝐵. Furthermore, it is also possible to equip the set-theoretic disjoint

union 𝐴 + 𝐵 and exponential 𝐴 ⇒ 𝐵 with algebra structures, making it a model of higher-order

programming with case analysis [Simpson 1992]. We only need to explicitly define the algebraic

structure when interpreting the type constructorM, which is interpreted as the free 𝐷-algebra

with the multiplication for the monad as the algebraic structure. The Sample rule is interpreted

using the joint probability operation ⊗ and the monad multiplication.

Now that we have defined the probabilistic semantics of the _2
INI
, we can prove its soundness

theorem: just like in _INI, the type constructor ⊗ enforces probabilistic independence.

Theorem 4.1. If · ⊢𝐼 𝑡 :M𝜏1 ⊗M𝜏2 then J𝑡K is an independent distribution.

Proof. The semantics of · ⊢𝐼 𝑡 :M𝜏1 ⊗M𝜏2 is a set-theoretic function J𝑡K : 1→ 𝐷 J𝜏1K×𝐷 J𝜏2K,
which is isomorphic to an independent distribution. □

4.2 Revisiting Sums
Let us revisit the problematic if-then-else program. The type system of _2

INI
makes it impossible

to produce an independent pair by pattern matching on values:

dist :M(1 + 1) ⊬𝐼 if dist then (tt ⊗ tt) else (ff ⊗ ff) :MB ⊗MB

where if-statements are simply elimination of sum types over booleans. However, we can write a

well-typed version of this program if we use the sharing product:

dist :M(1 + 1) ⊢𝐼 sample dist as 𝑥 in (if 𝑥 then (tt,tt) else (ff,ff)) :M(B × B)

Constants. As it stands, _2
INI

is not very expressive. Most languages based on core calculi usually

guarantee a certain level of expressivity by adding base types and operations to the language. One

of the basic examples are arithmetic expressions, as it is done for PCF. As such, in order to increase

the expressivity of _2
INI

we should add constants to the language.

Much like the _INI case, since we are interested in proving the soundness theorem, we should

guarantee that the operations also validate it. For the semantics presented in Figure 6, adding

new constants is straightforward from a semantic point of view, since ⊗ is denoted exactly by

independent distributions, which means that any function between 𝐷-algebras can be soundly

added to _2
INI
. Furthermore, any 𝐷-algebra can be added as a new type of _2

INI
.

Example: One-Time-Pad. Weuse this concrete semantics of _2
INI

to extend it with a type constructor

MUnif (𝜏) which is denoted by uniform distributions over 𝜏 , where 𝜏 is denoted by a finite set.

We can demonstrate this uniform constant through a simple program from cryptography. At a

high level, the information-theoretic security of some cryptographic protocols can be formulated

in terms of the interaction of uniform distributions and independence. One basic example is the

one-time pad cryptographic scheme. This protocol receives as input a message, we can assume that

it is a single bit𝑚, samples a uniformly distributed bit 𝑘 (key) and outputs the encrypted message

𝑚 ⊕ 𝑘 , where ⊕ is the xor operation.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Anon.

Const

𝑏 ∈ B

Γ ⊢𝑁𝐼 𝑏 : B

Var

Γ, 𝑥 : 𝜏 ⊢𝑁𝐼 𝑥 : 𝜏

Let

Γ ⊢𝑁𝐼 𝑡 : 𝜏1 Γ, 𝑥 : 𝜏1 ⊢𝑁𝐼 𝑢 : 𝜏

Γ ⊢𝑁𝐼 let 𝑥 = 𝑡 in 𝑢 : 𝜏

× Intro

Γ ⊢𝑁𝐼 𝑀 : 𝜏1 Γ ⊢𝑁𝐼 𝑁 : 𝜏2

Γ ⊢𝑁𝐼 (𝑀, 𝑁) : 𝜏1 × 𝜏2

× Elim𝑖

Γ ⊢𝑁𝐼 𝑀 : 𝜏1 × 𝜏2
Γ ⊢𝑁𝐼 𝜋𝑖𝑀 : 𝜏𝑖

⊕ Intro𝑖

Γ ⊢𝑁𝐼 𝑀 : 𝜏𝑖

Γ ⊢𝑁𝐼 in𝑖 𝑀 : 𝜏1 + 𝜏2

⊕ Elim

Γ ⊢𝑁𝐼 𝑀 : 𝜏1 + 𝜏2 Γ, 𝑥 : 𝜏1 ⊢𝑁𝐼 𝑁1 : 𝜏 Γ, 𝑥 : 𝜏2 ⊢𝑁𝐼 𝑁2 : 𝜏

Γ ⊢𝑁𝐼 case𝑀 of (| in1 𝑥 ⇒ 𝑁1 | in2 𝑦 ⇒ 𝑁2) : 𝜏

Var

𝑥 : 𝜏 ⊢𝐼 𝑥 : 𝜏

Abstraction

Γ, 𝑥 : 𝜏1 ⊢𝐼 𝑡 : 𝜏2

Γ ⊢𝐼 _𝑥. 𝑡 : 𝜏1 ⊸ 𝜏2

Application

Γ1 ⊢𝐼 𝑡 : 𝜏1 ⊸ 𝜏2 Γ2 ⊢𝐼 𝑢 : 𝜏1

Γ1, Γ2 ⊢𝐼 𝑡 𝑢 : 𝜏2

⊗ Intro

Γ1 ⊢𝐼 𝑡 : 𝜏1 Γ2 ⊢𝐼 𝑢 : 𝜏2

Γ1, Γ2 ⊢𝐼 𝑡 ⊗ 𝑢 : 𝜏1 ⊗ 𝜏2

⊗ Elim

Γ1 ⊢𝐼 𝑡 : 𝜏1 ⊗ 𝜏2 Γ2, 𝑥 : 𝜏1, 𝑦 : 𝜏2 ⊢𝐼 𝑢 : 𝜏

Γ1, Γ2 ⊢𝐼 let 𝑥 ⊗ 𝑦 = 𝑡 in 𝑢 : 𝜏

⊕ Intro𝑖

Γ ⊢𝐼 𝑡 : 𝜏𝑖

Γ ⊢𝐼 in𝑖 𝑡 : 𝜏1 ⊕ 𝜏2

⊕ Elim

Γ1 ⊢𝐼 𝑡 : 𝜏1 ⊕ 𝜏2 Γ2, 𝑥 : 𝜏1 ⊢𝐼 𝑢1 : 𝜏 Γ2, 𝑦 : 𝜏2 ⊢𝐼 𝑢2 : 𝜏

Γ1, Γ2 ⊢𝐼 case 𝑡 of (| in1 𝑥 ⇒ 𝑢1 | in2 𝑦 ⇒ 𝑢2) : 𝜏

Sample

𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛 ⊢𝑁𝐼 𝑀 : 𝜏 Γ𝑖 ⊢𝐼 𝑡𝑖 :M(𝜏𝑖) 0 < 𝑖 ≤ 𝑛

Γ1, . . . , Γ𝑛 ⊢𝐼 sample 𝑡𝑖 as 𝑥𝑖 in𝑀 :M(𝜏)

Fig. 5. Typing Rules: _2INI

The security of this protocol rests on two ideas. First, the encryption scheme must output a uni-

formly distributed bit and it must be independent from its input. Without worrying about the secu-

rity of the protocol, we can easilywrite it in _2
INI

as ` :M(2) ⊢𝐼 sample ` as𝑥 in let 𝑦 = coin in 𝑥 ⊕ 𝑦 :

M(2 × 2).
Unfortunately, as it stands we cannot use _2

INI
’s type system to prove that the protocol is secure.

We rectify this by adding the operation · ⊢𝐼 xor_pair :M(2) ⊸M(2) ⊗MUnif (2) that corresponds
to sampling from the input, xor-ing it with a fair coin and outputting the ciphered bit and the original

bit. We can now write the protocol as the program ` :M(2) ⊢𝐼 : xor_pair ` :M(2) ⊗ MUnif (2),
which has the right type.

4.3 Embedding from _INI to _2INI

Now that we have seen both _INI and _
2

INI
, a natural question is how these languages are related.

We first show how to embed the fragment of _INI without arrow types into _2
INI
. The idea is that

the semantics of _INI is given by a Kleisli category, so there is a translation into the NI-layer of _2
INI

.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

1:13

LBM = B JM𝜏K = (𝐷 J𝜏K , `J𝜏K)
L𝜏 × 𝜏M = L𝜏M × L𝜏M J𝜏 ⊗ 𝜏K = J𝜏K × J𝜏K
L𝜏 + 𝜏M = L𝜏M + L𝜏M J𝜏 ⊕ 𝜏K = J𝜏K + J𝜏K

J𝜏 ⊸ 𝜏K = J𝜏K→ J𝜏K

L𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛M = L𝜏1M × · · · × L𝜏𝑛M
q
𝑥1 : 𝜏

1
, . . . , 𝑥𝑛 : 𝜏

𝑛

y
=

q
𝜏
1

y
× · · · ×

q
𝜏
𝑛

y

LΓ ⊢ 𝑀 : 𝜏M ∈ Set𝐷 (LΓM, L𝜏M) JΓ ⊢ 𝑡 : 𝜏K ∈ S̃et𝐷 (JΓK , J𝜏K)

J𝑥K (𝛾, 𝑣𝑥) = 𝑣𝑥

J𝑡 ⊗ 𝑢K (𝛾1, 𝛾2) = J𝑡K (𝛾1) × J𝑢K (𝛾2)
Jlet 𝑥 ⊗ 𝑦 = 𝑡 in 𝑢K (𝛾1, 𝛾2) = J𝑢K (𝛾2, J𝑡K (𝛾1))

J_𝑥 . 𝑡K (𝛾) (𝑥) = J𝑡K (𝛾) (𝑥)
J𝑡 𝑢K (𝛾1, 𝛾2) = J𝑡K (𝛾1, J𝑢K (𝛾2)

Jin𝑖𝑡K (𝛾) = 𝑖𝑛𝑖 (J𝑡K (𝛾))

Jcase 𝑡 of (|in1𝑥 ⇒ 𝑢1 | in2𝑥 ⇒ 𝑢2)K (𝛾1, 𝛾2) =
{
J𝑢1K (𝛾2, 𝑣), J𝑡K (𝛾1) = 𝑖𝑛1 (𝑣)
J𝑢2K (𝛾2, 𝑣), J𝑡K (𝛾1) = 𝑖𝑛2 (𝑣)

Jsample 𝑡𝑖 as 𝑥𝑖 in 𝑁 K = ` ◦ 𝐷L𝑁 M ◦ (J𝑡1K ⊗ · · · ⊗ J𝑡𝑛K)

Fig. 6. Concrete Semantics: _2INI

The types are translated as follows:

T (B) ≜ B T (𝜏1 × 𝜏2) = T (𝜏1 ⊗ 𝜏2) ≜ T (𝜏1) × T (𝜏2)
While contexts are interpreted as

T (·𝐼) = T (·𝑆) = · T (𝑥 : 𝜏1) = T (𝜏1) T (Γ1, Γ2) = T (Γ1),T (Γ2)

T (Δ1;Δ2) = T (Δ1),T (Δ2) T (𝑟 [Δ]) = T (Δ) T (𝑟 [Γ]) = T (Γ)
At the term-level, the translation is the identity function with the exception of the region operators,

which are simply erased by the translation. We can prove by induction:

Theorem 4.2. If Γ ⊢ 𝑀 : 𝜏 in _INI then T (Γ) ⊢𝑁𝐼 T (𝑀) : T (𝜏) in _2INI.

Furthermore, this translation is sound and fully abstract:

Theorem 4.3. Let Γ ⊢ 𝑡1 : 𝜏 and Γ ⊢ 𝑡2 : 𝜏 in _INI then J𝑡1K = J𝑡2K if, and only if, JT (𝑡1)K = JT (𝑡2)K.

Proof. The proof follows by induction. □

It is also possible to translate the non-modal multiplicative (⊗, ⊸) fragment of _INI into the

I-layer of _2
INI
, by translating the types as follows:

T ′(B) ≜MB T ′(𝜏1 ⊗ 𝜏2) ≜ T ′(𝜏1) ⊗ T ′(𝜏2) T ′(𝜏1 ⊸ 𝜏2) ≜ T ′(𝜏1) ⊸ T ′(𝜏2)
The contexts are translated componentwise. Once again, the term translation is the identity function

and the modalities are erased from terms and contexts.

Theorem 4.4. If Γ ⊢ 𝑡 : 𝜏 in _INI then T ′(Γ) ⊢𝐼 T ′(𝑡) : T ′(𝜏) in _2INI.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Anon.

Proof. The proof follows by induction on the typing derivation Γ ⊢ 𝑡 : 𝜏 . □

By direct inspection the translation is sound and fully abstract with respect with the denotational

semantics of _INI and _
2

INI
.

Remark 4.5. It is not possible to translate the whole _INI into _
2

INI
. Since only one of the languages

of _2
INI

has arrow types and there is no way of moving from I into NI, the translation would need to

map _INI programs into I programs, which can only write probabilistically independent programs,

making it impossible to translate the × type constructor. By adding an additive function type to

the NI-layer of _2
INI
, it would be possible to extend the first translation so that it encompasses the

whole language; however, many of the concrete models that we will consider in the next section do

not support an additive function type in the NI-layer.

5 CATEGORICAL SEMANTICS AND CONCRETE MODELS
In this section, we present the general, categorical semantics of _2

INI
, by abstracting the proba-

bilistic semantics we saw in the previous section. Then, we present a variety of concrete models for

_2
INI
, based on existing semantics for effectful languages. Our soundness theorem ensures natural

notions of separation across these models.

5.1 Categorical Semantics of _2INI
Suppose we have two effectful languages, L1 and L2. The first one has a product type × which

allows for the sharing of resources, while the second one has the disjoint product type ⊗. Further-
more, we assume that L2 has a unary type constructorM linking both languages. The intuition

behind this decision is that an element of typeM𝜏 is a computation which might share resources.

From a language design perspective, the constructorM serves to encapsulate a possibly dependent

computation in an independent environment.

The first question is to understand how the connectives × and ⊗ should be interpreted categor-

ically. For ×, we need a comonoidal structure to duplicate and erase computation. This kind of

structure is captured by CD categories, which are monoidal categories where every object 𝐴 comes

equipped with a commutative comonoid structure 𝐴→ 𝐴 ⊗𝐴 and 𝐴→ 𝐼 making certain diagrams

commute [Cho and Jacobs 2019]. For ⊗, we want to restrict copying—the separating layer of our

language has a linear type system—so ⊗ should be a monoidal product.

Finally, to model the type constructorM, the usual categorical idea is that it should be some kind

of functor from L1 to L2. Let us look at some of the intuitions provided by the type system. The

typeM(𝜏1×𝜏2) is for computations that may share resources and output both 𝜏1 and 𝜏2. Meanwhile,

the typeM𝜏1 ⊗ M𝜏2 is for computations that output 𝜏1 and 𝜏2 while using separate resources.

This reading suggest that there should not be maps fromM(𝜏1 × 𝜏2) toM𝜏1 ⊗M𝜏2, since there

is no way of separating resources once they have been shared, but there should be maps from

M𝜏1 ⊗M𝜏2 toM(𝜏1 × 𝜏2), since separation is a specific example of sharing.

Categorically, the existence of these maps is captured by applicative functors, also known as lax

monoidal functors, which are functors 𝐹 : (C, ⊗𝐶 , 𝐼𝐶) → (D, ⊗𝐷 , 𝐼𝐷) between monoidal categories,

equipped with morphisms `𝐴,𝐵 : 𝐹 (𝐴) ⊗𝐷 𝐹 (𝐵) → 𝐹 (𝐴 ⊗𝐶 𝐵) and 𝜖 : 𝐼𝐷 → 𝐹 (𝐼𝐶) making certain

diagrams commute [Borceux 1994]. Thus, we are led to our categorical model for _2
INI
.

Definition 5.1. A _2
INI

model is a triple (C,M,M) whereC is a symmetric monoidal closed category

with weak coproducts; M is a distributive CD category with coproducts, i.e., 𝐴 ⊗𝑀 (𝐵 +𝑀 𝐶) �
(𝐴 ⊗𝑀 𝐵) +𝑀 (𝐴 ⊗𝑀 𝐶); andM : M→ C is lax monoidal.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

1:15

We clarify the fact that weak coproducts are similar to regular coproducts except that the universal

property only guarantees the existence of an arrow 𝐴 ⊕ 𝐵 → 𝐶 making the coproduct diagram

commute, not uniqueness. Furthermore, contrary to M, distributivity in C holds automatically.

Lemma 5.2. In every symmetric monoidal closed category with weak coproducts, the following
isomorphism holds: 𝐴 ⊗ (𝐵 ⊕ 𝐶) � (𝐴 ⊗ 𝐵) ⊕ (𝐴 ⊗ 𝐶).

Proof. By assumption, the functor 𝐴 ⊗ (−) is a left adjoint and, therefore, by Lemma 3.5 in

[Kainen 1971], preserves weak coproducts and we can conclude. □

The denotational semantics is given in Figure 7 and most of the equational theory is presented in

Figure 11, which can be found in Appendix B. Note that we omit the usual rules such as structural

axioms and substitution.

Soundness. In categorical models, the soundness theorem of _2
INI

can be stated as follows:

Theorem 5.3 (Soundness). Let · ⊢𝐼 𝑡 : 𝜏1 ⊗ 𝜏2 then J𝑡K = 𝑓 ⊗ 𝑔, where 𝑓 and 𝑔 are morphisms
𝐼 → J𝜏1K and 𝐼 → J𝜏2K, respectively.

From a proof-theoretic perspective, the soundness theorem states that for every proof of type

· ⊢ 𝜏1 ⊗ 𝜏2, we can assume that the last rule is the introduction rule for ⊗.
Establishing soundness requires additional categorical machinery, so we defer the proof to

Section 6. We highlight the fact, however, that like the _INI case, we will prove a more general

version of Theorem 5.3 which will imply properties for any well-typed _2
INI

program and will also

provide a list of requirements base types and operations must satisfy in order to be soundly added

to the calculus. In the rest of the section, we will exhibit a range of concrete models for _2
INI
.

5.2 Concrete models
To warm up, we present some basic probabilistic models _2

INI
. While prior work has also investi-

gated similar models [Azevedo de Amorim 2023], we adapt these models to _2
INI

and explain how

our soundness theorem ensures independence.

5.2.1 Discrete Probability. Our first concrete model is a different semantics for discrete probability.

For the sharing category, we take the category CountStoch with countable sets as objects, and

transition matrices as morphisms, i.e. functions 𝑓 : 𝐴×𝐵 → [0, 1] such that for every 𝑎 ∈ 𝐴, 𝑓 (𝑎,−)
is a (discrete) probability distribution [Fritz 2020].

For the independent category, we take the probabilistic coherence space model of linear logic, a

well-studied semantics for discrete probabilistic languages [Danos and Ehrhard 2011]. This model

was originally used to explore the connections between probability theory and linear logic, and

has recently been used to interpret recursive probabilistic programs and recursive types [Tasson

and Ehrhard 2019]; it is also fully-abstract for probabilistic PCF [Ehrhard et al. 2018].

Definition 5.4 (Danos and Ehrhard [2011]). A probabilistic coherence space (PCS) is a pair (|𝑋 |,P(𝑋))
where |𝑋 | is a countable set and P(𝑋) ⊆ |𝑋 | → R+ satisfies:

• ∀𝑎 ∈ |𝑋 | ∃Y𝑎 > 0 Y𝑎 · 𝛿𝑎 ∈ P(𝑋), where 𝛿𝑎 (𝑎′) = 1 iff 𝑎 = 𝑎′ and 0 otherwise;

• ∀𝑎 ∈ |𝑋 | ∃_𝑎 ∀𝑥 ∈ P(𝑋) 𝑥𝑎 ≤ _𝑎 ;

• P(𝑋)⊥⊥ = P(𝑋), where P(𝑋)⊥ = {𝑥 ∈ |𝑋 | → R+ | ∀𝑣 ∈ P(𝑋) ∑𝑎∈ |𝑋 | 𝑥𝑎𝑣𝑎 ≤ 1}.

We can define a category PCoh where objects are probabilistic coherence spaces and morphisms

𝑋 ⊸ 𝑌 are matrices 𝑓 : |𝑋 | × |𝑌 | → R+ such that for every 𝑣 ∈ P(𝑋), 𝑓 𝑣 ∈ P(𝑌), where
(𝑓 𝑣)𝑏 =

∑
𝑎∈ |𝑋 | 𝑓(𝑎,𝑏)𝑣𝑎 . It is well-known that this category is a SMCC with coproducts; we will

use the explicit definition of the monoidal product.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Anon.

Var

𝜏 × Γ 𝑖𝑑𝜏×𝑑𝑒𝑙Γ−−−−−−→ 𝜏

Let

Γ
𝑀−→ 𝜏1 Γ × 𝜏1

𝑁−→ 𝜏2

Γ
𝑐𝑜𝑝𝑦;(𝑖𝑑×𝑀) ;𝑁
−−−−−−−−−−−−→ 𝜏2

× Intro

Γ
𝑀−→ 𝜏1 Γ

𝑁−→ 𝜏2

Γ
𝑐𝑜𝑝𝑦;𝑀×𝑁
−−−−−−−−→ 𝜏1 × 𝜏2

× Elim𝑖

Γ
𝑀−→ 𝜏1 × 𝜏2

Γ
𝑀 ;(𝑖𝑑𝜏𝑖 ×𝑑𝑒𝑙)−−−−−−−−−−→ 𝜏𝑖

+ Intro𝑖
Γ

𝑀−→ 𝜏1

Γ
𝑀 ;𝑖𝑛𝑖−−−−→ 𝜏1 + 𝜏2

+ Elim
Γ1

𝑁−→ 𝜏1 + 𝜏2 Γ2 × 𝜏1
𝑀1−−→ 𝜏 Γ2 × 𝜏2

𝑀2−−→ 𝜏

Γ1, Γ2
𝑁×𝑖𝑑Γ

2−−−−−−→ (𝜏1 + 𝜏2) × Γ2 � (𝜏1 × Γ2) + (𝜏2 × Γ2)
[𝑀1,𝑀2]−−−−−−→ 𝜏

Var

𝜏
𝑖𝑑𝜏−−→ 𝜏

Abstraction

Γ ⊗ 𝜏1
𝑡−→ 𝜏2

Γ
cur(𝑡)
−−−−→ 𝜏1 ⊸ 𝜏2

Application

Γ1
𝑡−→ 𝜏1 ⊸ 𝜏2 Γ2

𝑢−→ 𝜏1

Γ1 ⊗ Γ2
(𝑡⊗𝑢) ;ev
−−−−−−→ 𝜏2

⊗ Intro

Γ1
𝑡−→ 𝜏1 Γ2

𝑢−→ 𝜏2

Γ1 ⊗ Γ2
𝑡⊗𝑢−−−→ 𝜏1 ⊗ 𝜏2

⊗ Elim

Γ1
𝑡−→ 𝜏1 ⊗ 𝜏2 Γ2 ⊗ 𝜏1 ⊗ 𝜏2

𝑢−→ 𝜏

Γ1 ⊗ Γ2
(𝑖𝑑⊗𝑡) ;𝑢
−−−−−−→ 𝜏

⊕ Intro𝑖

Γ
𝑡−→ 𝜏𝑖

Γ
𝑡 ;𝑖𝑛𝑖−−−→ 𝜏1 + 𝜏2

⊕ Elim

Γ1
𝑢−→ 𝜏1 + 𝜏2 𝜏1 ⊗ Γ2

𝑡1−→ 𝜏 𝜏2 ⊗ Γ2
𝑡2−→ 𝜏

Γ1, Γ2
𝑢⊗𝑖𝑑Γ

2−−−−−→ (𝜏1 + 𝜏2) ⊗ Γ2 � (𝜏1 ⊗ Γ2) + (𝜏2 ⊗ Γ2)
[𝑡1,𝑡2]−−−−−→ 𝜏

Sample

𝜏1 × · · · × 𝜏𝑛
𝑀−→ 𝜏 Γ𝑖

𝑡𝑖−→M𝜏𝑖

Γ1 ⊗ · · · ⊗ Γ𝑛
𝑡1⊗···⊗𝑡𝑛−−−−−−−→M𝜏1 ⊗ · · · ⊗ M𝜏𝑛

`
−→M(𝜏1 × · · · × 𝜏𝑛)

M𝑀−−−→M𝜏

Fig. 7. Categorical Semantics: _2INI

Definition 5.5. Let (|𝑋 |,P(𝑋)) and (|𝑌 |,P(𝑌)) be PCS, we define 𝑋 ⊗ 𝑌 = (|𝑋 | × |𝑌 |, {𝑥 ⊗ 𝑦 |
𝑥 ∈ P(𝑋), 𝑦 ∈ P(𝑌)}⊥⊥), where (𝑥 ⊗ 𝑦) (𝑎, 𝑏) = 𝑥 (𝑎)𝑦 (𝑏).

We can now define a functorM : CountStoch→ PCoh.

Lemma 5.6 (see, e.g., Azevedo de Amorim [2023]). Let 𝑋 be a countable set, the pair (𝑋, {` : 𝑋 →
R+ | ∑𝑥 ∈𝑋 ` (𝑥) ≤ 1}) is a PCS. Any CountStoch morphism 𝑋 → 𝑌 is also a PCoh morphism.

Lemma 5.7 (Azevedo de Amorim [2023]). The functorM : CountStoch→ PCoh is lax monoidal.

Summing up, we have a model of _2
INI

based on probabilistic coherence spaces.

Theorem 5.8. The triple (PCoh,CountStoch,M) is a _2INI model.

Proof. CountStoch is well-known to be a CD category with coproducts [Fritz 2020], and PCoh
is a symmetric monoidal closed category with coproducts because it is a model of linear logic [Danos

and Ehrhard 2011]. Finally, lax monoidality ofM is given by the previous lemma. □

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

1:17

In PCoh it is possible to show thatM𝜏1 ⊗M𝜏2 ⊆ M(𝜏1 ×𝜏2) meaning that well-typed programs

of typeM𝜏1 ⊗M𝜏2 are denoted by joint distributions over 𝜏1 × 𝜏2. Furthermore, by taking a closer

look at Definition 5.5 we see that `𝐴 ⊗ `𝐵 corresponds exactly to the product distribution of `𝐴 and

`𝐵 , so our soundness theorem implies that closed programs of typeM𝜏1 ⊗ M𝜏2 are denoted by

independent probability distributions.

Something interesting about this model is that it allows encoding of one of the if-statements from

Barthe et al. [2019], where they leverage the fact that independence is closed under if-statements of

deterministic guards. In this model we can represent this deterministic if-statement as the program:

ifD : (M1⊕M1)⊸ 𝜏 ⊸ 𝜏 ⊸ 𝜏

ifD 𝑏 𝑡1 𝑡2 = if 𝑏 then 𝑡1 else 𝑡2

5.2.2 Continuous Probability. Next, we consider models for continuous probability. For the shar-

ing layer, the generalization of CountStoch to continuous probabilities is BorelStoch, which has

standard Borel spaces as objects and Markov kernels as morphisms [Fritz 2020]; see Appendix C

for details. For the separating layer, we want a model of linear logic that can interpret continuous

randomness. We use a model based on perfect Banach lattices.

Definition 5.9 (Azevedo de Amorim and Kozen [2022]). The category PBanLat1 has perfect Banach
lattices as objects and order-continuous linear functions with norm at most one as morphisms.

Intuitively, a perfect Banach lattice is a Banach space equipped with a lattice structure and an

involutive linear negation. For every measurable space (𝑋, Σ𝑋) the space of signed measures over

it is a perfect Banach space, meaning that it can, for instance, interpret continuous probability

distributions over the real line. Furthermore, the map assigning (𝑋, Σ𝑋) to its space of signed

measures is functorial and lax monoidal.

Theorem 5.10 (Azevedo de Amorim and Kozen [2022]). There is a lax monoidal functor M :

BorelStoch→ PBanLat1.

Theorem 5.11. The triple (PBanLat1,BorelStoch,M) is a _2INI model.

Proof. The category BorelStoch has a CD structure and has coproducts because it is isomorphic

to the Kleisli category of a commutative monad over the category Meas [Fritz 2020]. The category
PBanLat1 is a model of classical linear logic, making it a SMCC with coproducts [Azevedo de

Amorim and Kozen 2022]. The lax monoidality ofM follows from the previous theorem. □

This model can be seen as the continuous generalization of the previous model, since there are

full and faithful embeddings CountStoch ↩→ BorelStoch and PCoh ↩→ PBanLat1 [Azevedo de

Amorim and Kozen 2022]. In this model, our soundness theorem once again ensures probabilistic

independence, i.e. programs of typeM𝜏1 ⊗M𝜏2 are denoted by independent distributions.

Something interesting about vector-space-based models of linear logic is that their monoidal unit,

usually R, is not a terminal object and form a model of affine linear logic, since there is always a

linear transformation𝑉 ⊸ R that maps everything to 0. From a programming point of view this has

unexpected consequences, since for every well-typed program · ⊢ 𝑡 : 𝜏 , the program let 𝑥 = ∗ in 𝑡

is denotationally equal to the constant 0 function.

5.2.3 Non-Determinism and Communication. Next, we show that the relational model of linear

logic gives rise to a _2
INI

model, with applications to distributed programming.

Semantics. Our starting point is the category Rel of sets and binary relations, one of the most

well-known models of linear logic. By pairing this category with the Kleisli category SetP , for the
powerset monad P we immediately obtain a model for _2

INI
.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Anon.

Theorem 5.12. The triple (Rel, SetP, 𝑖𝑑) is a _2INI model.

Proof. Binary relations over sets 𝐴 and 𝐵 are represented either as subsets 𝑅 ⊆ 𝐴 × 𝐵 or,

equivalently, as functions 𝐴→ P(𝐵). From this observation it is possible to show that the identity

functor is an isomorphism and it easily follows from this that 𝑖𝑑 is lax monoidal. Since Rel is a
model of linear logic, it has coproducts and, by isomorphism, so does SetP . □

Application to Distributed Programming. While this model arises from linear logic, we show that

it leads to a suitable language for distributed programming. We assume a two-tier approach to

programming with communication: the NI language is used for writing local programs, while

the I language is used to orchestrate the communication between local code. Programs of type

M𝜏 correspond to local computations that can be manipulated by the communication language.

Programs in the 𝐼 language are interpreted as maps of the form 𝐴→ P(𝐵); we view these maps as

allowing non-deterministic or lossy communication.

To align the syntax with this interpretation, we tweak the syntax sample 𝑡𝑖 as 𝑥𝑖 in 𝑀 to

send 𝑡𝑖 as𝑥𝑖 in𝑀 which sends the values computed by the local programs 𝑡𝑖 , binds them to 𝑥𝑖 and

continues as the local program 𝑀 . To see how how distributed programs can be written in this

language, we consider a simple distributed voting protocol between two parties. We suppose that

there is a leader that receives two messages containing the votes and if they are the same, the

election is decided and the leader announces the winner. If the votes disagree, the leader outputs a

tagged unit value saying that there has been a draw. In _2
INI
, the leader can be implemented as:

leader :MN⊗MN ⊸M(N ⊕ 1)
leader = _ 𝑥1 𝑥2. send𝑥1, 𝑥2 as𝑛1, 𝑛2 in if 𝑛1 = 𝑛2 then (in1 𝑛1) else (in2 ())

Given a program votes :MN ⊗MN that computes what each agent will vote, the full distributed

program can be represented as the application leader votes. Note that if either of the messages

drops, i.e. the input is the empty set, the whole protocol never terminates.

Soundness theorem. In this model, our soundness result ensures that if we have a closed program

of typeM𝜏1 ⊗M𝜏2, then it can be factored as two local programs that can be run locally, and do

not require any extra communication other than the send instructions. To understand why this

guarantee is non-trivial, consider the problematic program from Section 4:

message :M(1 + 1) ⊬𝐼 if message then (tt ⊗ tt) else (ff ⊗ ff) :MB ⊗MB

Under our interpretation, the if-statement is conditioning on the contents of the program vari-

able message and producing two local computations that have the same outputs. There are two

potential sources of implicit communication in this program. First, the contents of message are
non-deterministic, so the local computations must communicate in order to agree on what value

to return. Second, by conditioning on the same value, the message must be sent to both local

computations. These indirect communications have already been addressed in the choreography

literature, as illustrated by Hirsch and Garg [2022], where their language allows pattern matching

on local computation but the chosen branch must be broadcast to programs that depend on it,

which is not problematic in a setting where communication is reliable.

To illustrate the soundness guarantee, we can revisit the distributed voting example. By the

soundness theorem, the program votes is equal to 𝑡1 ⊗ 𝑡2 for programs 𝑡1, 𝑡2 :MN. Thus, the only

communication required are explicit sends.

Expressivity and Limitations. Intuitively, closed programs in _2
INI

of typeM𝜏 are equivalent to

send 𝑡𝑖 as 𝑥𝑖 in𝑀 , which we view as a local program𝑀 that starts by receiving 𝑛 different messages,

runs its body𝑀 with the received messages as bound variables, and makes its output available to

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

1:19

be sent to a different local computation. Therefore, each local program may only have one block of

receives at the beginning and one send at the end, limiting the allowed communication patterns.

These limitations have been addressed in other modal approaches to distributed programming by

having a static 𝐴 set of agents and a modality annotated by elements of 𝐴 denoting computations

that are executed by a particular agent of the distributed system [Hirsch and Garg 2022].

RelatedWork. Distributed programming is challenging and error-prone, and there is a long history

of language design in this setting. Two notable examples are session types [Hüttel et al. 2016] and

choreographic programming [Montesi 2014]. Session types adopts a linear typing discipline where

type constructors model the desired protocol. On the other hand, choreographic programming

adopts a monolithic approach: The entire system is written as a single program that can be compiled

to “local computations”, with the compiler adding the appropriate communication instructions.

Our model of _2
INI

blends aspects of both approaches. It still has a substructural communication

type system, but it also represents protocols using a single global program with a two-tier language

that distinguishes between local and global computation. We leave a more thorough comparison

between these languages for future work.

5.2.4 Commutative Effects. In this section we will present a large class of models based on com-

mutative monads which are monads where, in a Kleisli semantics of effects, the program equation

(let 𝑥 = 𝑡 in let 𝑦 = 𝑢 in𝑤) ≡ (let 𝑦 = 𝑢 in let 𝑥 = 𝑡 in𝑤) holds.
The Kleisli category of commutative monads has many useful properties.

Theorem 5.13 (Fritz [2020]). Let C be a Cartesian category and𝑇 a commutative monad over it. The
Kleisli category C𝑇 is a CD category.

Lemma 5.14. Let C be a distributive category and 𝑇 a monad over it. Its Kleisli category C𝑇 has
distributive coproducts.

Proof. It is straightforward to show that Kleisli categories inherit coproducts from the base

category. Furthermore, by using the distributive structure of C, applying 𝑇 to it and using the

functor laws, it follows that C𝑇 is distributive. □

Another useful category of algebras is the category of algebras and plain maps C̃𝑇
which has 𝑇

algebras as objects and C̃𝑇 ((𝐴, 𝑓), (𝐵,𝑔)) = C(𝐴, 𝐵).

Theorem 5.15 (Simpson [1992]). Let C be a Cartesian closed category and 𝑇 a strong monad over it.
The category of 𝑇 -algebras and plain maps is Cartesian closed, and 1 is a terminal object.

Lemma 5.16. Let C be a cocartesian category and 𝑇 a monad over it. The category of 𝑇 -algebras and
plain maps has weak coproducts.

Proof. Let (𝐴, 𝛼) and (𝐵, 𝛽) be two 𝑇 -algebras. We define (𝐴, 𝛼) ⊕ (𝐵, 𝛽) = (𝑇 (𝐴 + 𝐵), `𝐴+𝐵).
Let us prove that this construction satisfies the weak universal property. We start by defining the

injection morphism 𝑖𝑛′
1
: (𝐴, 𝛼) → (𝑇 (𝐴 + 𝐵), `), which is defined as 𝑖𝑛1;[𝐴+𝐵 , where 𝑖𝑛1 is the

injection morphism in C. Next, if 𝑓1 : (𝐴, 𝛼) → (𝐶,𝛾) and 𝑓2 : (𝐵, 𝛽) → (𝐶,𝛾) are plain maps, their

weak universal arrow is 𝑇 [𝑓1, 𝑓2];𝛾 , where [𝑓1, 𝑓2] is the cocartesian universal arrow in C.
The weak universal property follows by 𝑖𝑛𝑖 ;[𝐴+𝐵 ;𝑇 [𝑓1, 𝑓2];𝛾 = 𝑖𝑛𝑖 ; [𝑓1, 𝑓2];[𝐶 ;𝛾 = 𝑓𝑖 □

Therefore, we choose the Kleisli category to interpret NI and the category of 𝑇 -algebras and

plain maps to interpret I. We only have to show that there is an applicative functor between them.

Theorem 5.17. There exists an applicative functor] : C𝑇 → C̃𝑇 .

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Anon.

Proof. The functor acts by sending objects 𝐴 to the free algebra (𝑇𝐴, `𝐴) and morphisms

𝑓 : 𝐴 → 𝑇𝐵 to 𝑓 ∗. Now, for the lax monoidal structure, consider the natural transformation

` ◦ 𝑇𝜏 ◦ 𝜎 : 𝑇𝐴 × 𝑇𝐵 → 𝑇 (𝐴 × 𝐵) and [1 : 1 → 𝑇1, where 𝜏 and 𝜎 are the strengths of 𝑇 . Lax

monoidality follows from 𝑇 being commutative and the operation 𝑑𝑒𝑙𝐴 : 𝐴→ 1 being natural. □

Theorem 5.18. The triple (C̃𝑇 ,C𝑇 ,]) is a _2INI model.

It is also possible to define a variant to this algebra model using the Eilenberg-Moore category

since this category is known to be symmetric monoidal closed under a few minor hypothesis

[Azevedo de Amorim 2023].

Name generation. Simple concrete examples of commutative effects are probability and non-

determinism, which we saw before. A less standard example is the name generation monad used to

give semantics to thea-calculus, a language that has a primitive for generating “fresh” symbols [Stark

1996]. This is a useful abstraction, for instance, in cryptography, where a new symbol might be a

secret that you might not want to share with adversaries.

A concrete semantics to the a-calculus was presented by Stark [1996] where the base category is

the functor category [Inj, Set], with Inj being the category of finite sets and injective functions. In

this case the (commutative) name generation monad acts on functors as

𝑇 (𝐴) (𝑠) = {(𝑠 ′, 𝑎′) | 𝑠 ′ ∈ Inj, 𝑎′ ∈ 𝐴(𝑠 + 𝑠 ′)}/∼

where (𝑠1, 𝑎1) ∼ (𝑠2, 𝑎2) if, and only if, for some 𝑠0 there are injective functions 𝑓1 : 𝑠1 → 𝑠0 and

𝑓2 : 𝑠2 → 𝑠0 such that 𝐴(𝑖𝑑𝑠 + 𝑓1)𝑎1 = 𝐴(𝑖𝑑𝑠 + 𝑓2)𝑎2. The intuition is that 𝑇 (𝐴) is a computation

that, given a finite set 𝑠 of names used, produces the newly generated names 𝑠 ′, and a value 𝑎′. By

Theorem 5.18 the triple (�[Inj, Set]𝑇 , [Inj, Set]𝑇 ,]) is a _2
INI

model.

Syntactically, we can extend the type grammar of the 𝑁𝐼 language with a type Name for names,

and the 𝑁𝐼 language with an operation · ⊢ fresh : Name for name generation. Our soundness

theorem says that for a program of typeM𝜏 ⊗M𝜏 , the names used to compute the first component

are disjoint from the ones used to compute the second component.

Example: Avoiding Replay Attacks. From a programming point of view, it is important to be able

to enforce at the type-level when the set of names being used are disjoint, since failing to do so

can create subtle security bugs. Consider the use case where fresh corresponds to a primitive that

generates a new encryption key. A common security vulnerability is using the same key to encrypt

distinct messages.

Consider a protocol that receives two distinct messages, generates two distinct encryption keys

and outputs the two encrypted message. Furthermore, we will assume, as it is frequently the case in

practice, that the key ismuch smaller than themessage. For the sake of simplicitywewill assume that

messages are twice as long as keys and that there is a primitive split :M(𝑚𝑠𝑔)⊸M(𝑚𝑠𝑔)⊗M(𝑚𝑠𝑔)
that splits a message into its two key-sized blocks. In this setting we can write the program that

receives as input two messages and outputs their encryption.

· ⊢𝐼 _𝑚1𝑚2 .

let 𝑓1 ⊗ 𝑓2 = split𝑚1 in

let 𝑓 ′
1
⊗ 𝑓 ′

2
= split𝑚2 in

sample 𝑓1, 𝑓2, fresh as 𝑥1, 𝑥2, 𝑘 in𝑀 ⊗ sample 𝑓 ′
1
, 𝑓 ′

2
, fresh as 𝑥1, 𝑥2, 𝑘 in𝑀

:M(𝑚𝑠𝑔)⊗M(𝑚𝑠𝑔)⊸M(𝑚𝑠𝑔)⊗M(𝑚𝑠𝑔),

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1:21

where 𝑀 = (𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (𝑥1, 𝑘)) ++ (𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (𝑥2, 𝑘)) and ++ is the list concatenation operation. Note

that if we were to split𝑚1 twice, the program would no longer type check, effectively making

certain bugs unrepresentable in the language.

Remark 5.19 (Call-by-Value and Call-by-Name Semantics of Effects). Categories of algebras and

plain maps were used as a denotational foundation for call-by-name programming languages while

Kleisli categories can be used to interpret call-by-value languages [Simpson 1992]. Thus, the I

language can be seen as a CBN interpretation of effects, while NI can be seen as a CBV interpretation

of effects. The operational interpretation of sample 𝑡 as 𝑥 in 𝑀 is to force the execution of CBN

computations 𝑡 , bind the results to 𝑥 , and run them eagerly in the program𝑀 .

5.2.5 Affine Bunched Typing. It is natural to wonder how BI is related to _2
INI
. We have seen that

certain fragments of the BI inspired language _INI embeds in _2
INI

. Semantically, bunched calculi are

interpreted using a doubly closed category (DCC), a single category that has both a Cartesian closed

and a (usually distinct) monoidal closed structure. In order to understand how these systems are

related, let us consider the affine variant of the bunched calculus, i.e., when the monoidal unit is a

terminal object in the semantic category, meaning that there is a discard operation 𝐴 ⊗ 𝐵 → 𝐴.

Given an affine BI model C, there is a morphism 𝐴 ⊗ 𝐵 → 𝐴 × 𝐵 given by the universal property of

products applied to the discard morphisms𝐴⊗𝐵 → 𝐴 and𝐴⊗𝐵 → 𝐵. Furthermore, by assumption

𝐼 � 1, where 1 is the unit for the Cartesian product and 𝐼 is the unit for the monoidal product.

Finally, such a structure makes the lax monoidality diagrams commute, making the identity functor

𝑖𝑑 : (C,×, 1) → (C, ⊗, 𝐼) a lax monoidal functor between the two monoidal structures over C. Thus:

Theorem 5.20. For every cocartesian model of affine BI C the triple (C,C, 𝑖𝑑) is a model of _2INI.

Remark 5.21. From a more abstract point of view, by initiality of the syntactic model of _2
INI

(Theorem B.3) and the theorem above, there is a translation from _2
INI

to the bunched calculus. Thus,

affine bunched calculi can be seen as a degenerate version of our language, where the two layers

are collapsed into one.

Syntactic Control of Interference. To illustrate a useful model of the affine bunched calculus, let

us consider O’Hearn’s bunched language SCI+ [O’Hearn 2003]. This language allows allocating

memory and reasoning about aliasing, building on Reynolds’ Syntactic Control of Interference

(SCI), a linear type system. In the denotational semantics of SCI+, types are objects in the functor

category SetP(𝐿𝑜𝑐) , where P(𝐿𝑜𝑐) is the poset category of subsets of 𝐿𝑜𝑐 , an infinite set of names

(i.e., memory addresses). Intuitively, a presheaf maps a subset of locations to the set of computations

that use those locations. It is well-known that this category is a model of affine BI: The Cartesian

closed structure is given by the usual construction on presheaves, while the monoidal closed

structure is given by a different product on presheaves, called the Day convolution [O’Hearn 2003].

By Theorem 5.20 the triple (SetP(𝐿𝑜𝑐) , SetP(𝐿𝑜𝑐) , 𝑖𝑑) is a _2
INI

model and, therefore, satisfies its

soundness property. To understand what it means in this context, we look at how the model is

defined. Given presheaves 𝐴 and 𝐵 over P(𝐿𝑜𝑐), the monoidal product 𝐴 ⊗ 𝐵 is defined as

(𝐴 ⊗ 𝐵) (𝑋) ≜ {(𝑎, 𝑏) ∈ 𝐴(𝑋) × 𝐵(𝑋) | 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑎) ∩ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑏) = ∅}
(𝐴 ⊗ 𝐵) (𝑓) ≜ (𝐴𝑓 𝑎, 𝐵𝑓 𝑏)

The 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 function acts on sets and has a slightly technical definition that models which resources

in𝐿𝑜𝑐 were used to produce the set—the interested reader should consult the original paper [O’Hearn

2003]. At a high level, the disjointness of the support captures the fact that the memory locations

used to produce 𝑎 are disjoint from the memory locations used to produce 𝑏. Therefore, our

soundness theorem guarantees that the components of closed programs of typeM𝜏1 ⊗M𝜏2 do

not share any memory locations.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Anon.

types 𝜏 ::= cell | exp | comm | 𝜏 → 𝜏 | 𝜏 ⊸ 𝜏 | 𝜏 × 𝜏
contexts Γ ::= · | 𝑥 : 𝜏 | Γ; Γ | Γ, Γ

Fig. 8. Types and Terms: SCI+

Γ ⊢ 𝑀 : comm Γ ⊢ 𝑁 : comm

Γ ⊢ 𝑀 ;𝑁 : comm

Γ1 ⊢ 𝑀 : comm Γ2 ⊢ 𝑁 : comm

Γ1, Γ2 ⊢ 𝑀 | |𝑁 : comm

Γ, 𝑥 : cell ⊢ 𝑀 : comm

Γ ⊢ new𝑥 .𝑀 : comm

Γ ⊢ 𝑀 : cell Γ ⊢ 𝑁 : exp

Γ ⊢ 𝑀 := 𝑁 : comm

Γ ⊢ 𝑀 : 𝜏1 → 𝜏2 Γ ⊢ 𝑁 : 𝜏1

Γ ⊢ 𝑀 𝑁 : 𝜏2

Γ1 ⊢ 𝑀 : 𝜏1 ⊸ 𝜏2 Γ2 ⊢ 𝑁 : 𝜏1

Γ1, Γ2 ⊢ 𝑀 𝑁 : 𝜏2

Fig. 9. Typing Rules: SCI+ (selected)

For our purposes, we are mainly interested in the SCI+ operations presented in Figure 9. The

first two rules are for composing commands either sequentially or in parallel, respectively. The

following two rules are the ones related to memory manipulation, where the first one allocates a

new memory location and the second one assigns a value to a location. The final two are the two

applications: the first allows the context to be shared, while the second does not.

A notorious difficulty of running stateful programs in parallel is that there might be concurrent

writes to the same memory location. This is avoided in SCI+ by using the separating concatenation

of contexts, guaranteeing that no such conflict of writes can occur. When programs are sequentially

composed, no such issues come up and the context may be shared. When a new memory cell is

allocated using the new𝑥 .𝑀 syntax, a new variable is bound to the context representing the new

location which is disjoint from the existing ones, hence the separating context extension.

SCI+ in _2INI. As we have explained, a direct consequence of Theorem 5.20 is that there is a trans-

lation of _2
INI

into the BI calculus. However, it is not a direct consequence that the cell and command

operations can be given similar typing rules and semantics to their original formulation. By slightly

modifying _2
INI

we can accommodate them as we show in Figure 10. Sequential composition is done

in the NI language while parallel composition is done at the I language. The cell assignment rule is

added to the NI language, since there is no reason to require that a cell’s address and its value are

computed using separate locations. For cell allocation, the original rule requires the new cell to be

disjoint from the existing ones, making it natural to use the I language.

Example 5.22 (O’Hearn [2003]). Consider the _2
INI

program (_𝑥 𝑦. 𝑥 := 1;𝑦 := 2) 𝑧 𝑧. There are
two possible types for the _-abstraction. The typeMcell⊸Mcell⊸Mcomm requires that the

input locations 𝑥 and 𝑦 must be disjoint, while the typeM(cell × cell)⊸Mcomm allows 𝑥 and 𝑦

to be shared. The former makes the application ill-typed, since the arguments to the abstraction

are the same, while the latter is well-typed. Note, however, that it is only well-typed because the

assignments are sequentially composed. If they were composed in parallel the program would be

ill-typed, just like in SCI+, since parallel composition requires disjoint memory locations.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1:23

Seqential

Γ ⊢𝑁𝐼 𝑀 : comm Γ ⊢𝑁𝐼 𝑁 : comm

Γ ⊢𝑁𝐼 𝑀 ;𝑁 : comm

Parallel

Γ1 ⊢𝐼 𝑡 :Mcomm Γ2 ⊢𝐼 𝑢 :Mcomm

Γ1, Γ2 ⊢𝐼 𝑡 | |𝑢 :Mcomm

New

Γ, 𝑥 :Mcell ⊢𝐼 𝑡 :Mcomm

Γ ⊢𝐼 new𝑥 .𝑡 :Mcomm

Assign

Γ ⊢𝑁𝐼 𝑀 : cell Γ ⊢𝑁𝐼 𝑁 : exp

Γ ⊢𝑁𝐼 𝑀 := 𝑁 : comm

Fig. 10. Typing Rules: _2INI extended with SCI primitives

6 SOUNDNESS THEOREM
So far we have seen two proofs of soundness. For _INI, we proved soundness using logical

relations (Theorem 3.3). For _2
INI

with a probabilistic semantics, we used an observation about

algebras for the distribution monad (Theorem 4.1). This proof is slick, but the strategy does not

generalize to other models of _2
INI
.

Thus, to prove our general soundness theorem for _2
INI
, we will return to logical relations. The

statement of our soundness theorem is as follows.

Theorem 6.1. If · ⊢𝐼 𝑡 :M𝜏1 ⊗M𝜏2 then J𝑡K can be factored as two morphisms J𝑡K = 𝑓1 ⊗ 𝑓2, where
𝑓1 : 𝐼 →M J𝜏1K and 𝑓2 : 𝐼 →M J𝜏2K.

Logical relations are frequently used to prove metatheoretical properties of type theories and

programming languages. However, they are usually used in concrete settings, i.e., for a concrete

model where we can define the logical relation explicitly. In our case, however, this approach is not

enough, since we are working with an abstract categorical semantics of _2
INI

. Thus, we will leverage

the categorical treatment of logical relations, called Artin gluing, a construction originally used in

topos theory [Hyland and Schalk 2003; Johnstone et al. 2007].

A detailed description of this technique is beyond the scope of this paper. However, we highlight

some of the essential aspects here. We have already introduced our class of models for _2
INI
. Let

Γ ⊢𝐼 𝑡 : 𝜏 be a well-typed program. For every concrete model (C,M,M), we want to show that the

interpretation J𝑡K in this model must satisfy some properties in order to validate the soundness

theorem. At a high level, there are three steps to the gluing argument:

(1) Define a category of models of _2
INI

, and show that every interpretation J·K can be encoded

as a map from the syntactic model Syn to (C,M,M); where the syntactic model has types

as objects and typing derivations (modulo the equational theory of _2
INI

) as morphisms. This

property follows by showing that the syntactic model is initial.

(2) Define a triple (Gl(C),M, M̃)—where objects of the category Gl(C) are pairs (𝐴,𝑋 ⊆
C(𝐼 , 𝐴)), the subsets 𝑋 are viewed as predicates on 𝐴, and morphisms preserve these

predicates—and show that this structure is a model of _2
INI

. We call this the glued model and

there is an obvious forgetful model morphism (Gl(C),M, M̃) → (C,M,M).
(3) Using initiality, define a map L·M from the syntactic model Syn to the glued model. The data

of this map associates every I-type 𝜏 in _2
INI

to an object (𝐴𝜏 , 𝑋𝜏 ⊆ C(𝐼 , 𝐴𝜏)); intuitively,
𝐴𝜏 ∈ C is the interpretation of 𝜏 under J·K, and the subset 𝑋𝜏 encodes the logical relation at

type 𝜏 , so this map defines a logical relation. The functor L·M and its codomain encode the

logical relations proof.

Finally, we can use L·M to map any global element in the syntactic category, i.e., well-typed term

· ⊢𝐼 𝑡 : 𝜏 , to an element of 𝑋𝜏 . By initiality of Syn, J𝑡K also is an element of 𝑋𝜏 , completing the

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Anon.

proof by logical relations proof. We defer the details to Appendix B, where we also go over the

details of how to soundly add base types and operations to _2
INI
.

7 RELATEDWORK
Linear logics and probabilistic programs. A recent line of work uses linear logic as a powerful

framework to provide semantics to probabilistic programming languages. Notably, Ehrhard et al.

[2018] show that a probabilistic version of the coherence-space semantics for linear logic is fully

abstract for probabilistic PCF with discrete choice, and Ehrhard et al. [2017] provide a denotational

semantics inspired by linear logic for a higher-order probabilistic language with continuous random

sampling. Linear type systems have also been developed for probabilistic properties, like almost

sure termination [Dal Lago and Grellois 2019] and differential privacy [Azevedo de Amorim et al.

2019; Reed and Pierce 2010].

Our categorical model for _2
INI

is inspired by models of linear logic based on monoidal adjunctions,

most notably Benton’s LNL [Benton 1994]. From a programming languages perspective, these

models decompose the linear _-calculus with exponentials in two languages with distinct product

types each These two-level languages are very similar to _2
INI

, and indeed it is possible to show that

every LNL model is a _2
INI

model. At the same time, the class of models for _2
INI

is much broader

than LNL—none of the models presented in Section 5.2 are LNL models. Furthermore, the “shared”

layer in LNL models is Cartesian closed, which is unsuitable for programming with effects, due to

its call-by-name nature.

Higher-order programs and effects. There is a very large body of work on higher-order programs

effects, which we cannot hope to summarize here. The semantics of _INI is an instance of Moggi’s

Kleisli semantics, from his seminal work on monadic effects [Moggi 1991]; the difference is that

our one-level language uses a linear type system to enforce probabilistic independence.

Another well-known work in this area is Call-by-Push-Value (CBPV) [Levy 2001]. It is a two-level

metalanguage for effects which subsumes both call-by-value and call-by-name semantics. Each

level has a modality that takes from one level to the other one. There is a resemblance to _2
INI
, but

the precise relationship is unclear—none of our concrete models are CBPV models.

Our two-level language _2
INI

can also be seen as an application of a novel resource interpretation

of linear logic developed by Azevedo de Amorim [2023], which uses an applicative modality to

guarantee that the linearity restriction is only valid for computations, not values. Our focus is on

separation and effects: we show how different sum types for effectful computations can be naturally

accommodated in this framework, we consider a more general class of categorical models, and we

prove a soundness theorem ensuring separation for effectful computations.

Bunched type systems. Our focus on sharing and separation is similar to the motivation of another

substructural logic, called the logic of bunched implicates (BI) [O’Hearn and Pym 1999]. Like our

system, BI features two conjunctions modeling separation of resources, and sharing of resources.

Like in _INI, these conjunctions in BI belong to the same language. Unlike our _2
INI

, BI also features

two implications, one for each conjunction. The leading application of BI is in separations logic for

concurrent and heap-manipulating programs [O’Hearn 2007; O’Hearn et al. 2001], where pre- and

post-conditions are drawn from BI.

Though _INI also has a bunched type system, its semantics differs from the doubly closed

categorical semantics of BI. It is still unclear how to characterize the categorical semantics of _INI,

but we conjecture that it is equivalent to doubly strong monads over doubly closed categories.

Probabilistic independence in higher-order languages. There are a few probabilistic functional

languages with type systems that model probabilistic independence. Probably themost sophisticated

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1:25

example is due to Darais et al. [2019], who propose a type system combining linearity, information-

flow control, and probability regions for a probabilistic functional language. Darais et al. [2019]

show how to use their system to implement and verify security properties for implementations of

oblivious RAM (ORAM). Our work aims to be a core calculus capturing independence, with a clean

categorical model.

Lobo Vesga et al. [2021] present a probabilistic functional language embedded in Haskell, aiming

to verify accuracy properties of programs from differential privacy. Their system uses a taint-based

analysis to establish independence, which is required to soundly apply concentration bounds, like

the Chernoff bound. Unlike our work, Lobo Vesga et al. [2021] do not formalize their independence

property in a core calculus.

Probabilistic separation logics. A recent line of work develops separation logics for first-order,

imperative probabilistic programs, using formulas from the logic of bunched implications to

represent pre- and post-conditions. Systems can reason about probabilistic independence [Barthe

et al. 2019], but also refinements like conditional independence [Bao et al. 2021; Li et al. 2023], and

negative association [Bao et al. 2022]. These systems leverage different Kripke-style models for the

logical assertions; it is unclear how these ideas can be adapted to a type system or a higher-order

language. There are also quantitative probabilistic separation logics [Batz et al. 2022, 2019].

8 CONCLUSION AND FUTURE DIRECTIONS
We have presented two linear, higher-order languages with types that can capture probabilis-

tic independence, and other notions of separation in effectful programs. We see several natural

directions for further investigation.

Other variants of independence. In some sense, probabilistic independence is a trivial version

of dependence: it captures the case where there is no dependence whatsoever between two ran-

dom quantities. Researchers in statistics and AI have considered other notions that model more

refined dependency relations, such as conditional independence, positive association, and negative

dependence (e.g., [Dubhashi and Ranjan 1998]). Some of these notions have been extended to other

models besides probability; for instance, Pearl and Paz [1986] develop a theory of graphoids to
axiomatize properties of conditional independence. It would be interesting to see whether any of

these notions can be captured in a type system.

Non-commutative effects. Our concrete models encompass many kinds of monadic effects, but

we only support effects modeled by commutative monads. Many common effects are modeled by

non-commutative monads, e.g., the global state monad. It may be possible to extend our language

to handle non-commutative effects, but we would likely need to generalize our model and consider

non-commutative logics.

Towards a general theory of separation for effects. We have seen how in the presence of effects,

constructs like sums and products come in two flavors, which we have interpreted as sharing and

separate. Notions of sharing and separation have long been studied in programming languages

and logic, notably leading to separation logics. We believe that there should be a broader theory of

separation (and sharing) for effectful programs, which still remains to be developed.

REFERENCES
Arthur Azevedo de Amorim, Marco Gaboardi, Justin Hsu, and Shin-ya Katsumata. 2019. Probabilistic Relational Reasoning

via Metrics. In ACM/IEEE Symposium on Logic in Computer Science (LICS), Vancouver, British Columbia. IEEE, 1–19. DOI:
http://dx.doi.org/10.1109/LICS.2019.8785715

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

http://dx.doi.org/10.1109/LICS.2019.8785715

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Anon.

Pedro H. Azevedo de Amorim. 2023. A Higher-Order Language for Markov Kernels and Linear Operators. In Foundations of
Software Science and Computation Structures (FoSSaCS), Paris, France.

Pedro H Azevedo de Amorim and Dexter Kozen. 2022. Classical Linear Logic in Perfect Banach Spaces. Preprint (2022).
Jialu Bao, Simon Docherty, Justin Hsu, and Alexandra Silva. 2021. A bunched logic for conditional independence. In 2021

36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, 1–14.
Jialu Bao, Marco Gaboardi, Justin Hsu, and Joseph Tassarotti. 2022. A separation logic for negative dependence. Proceedings

of the ACM on Programming Languages 6, POPL (2022), 1–29.

Gilles Barthe, Justin Hsu, and Kevin Liao. 2019. A Probabilistic Separation Logic. Proceedings of the ACM on Programming
Languages 4, POPL (2019), 1–30.

Kevin Batz, Ira Fesefeldt, Marvin Jansen, Joost-Pieter Katoen, Florian Keßler, Christoph Matheja, and Thomas Noll. 2022.

Foundations for Entailment Checking in Quantitative Separation Logic. In Programming Languages and Systems - 31st
European Symposium on Programming, ESOP 2022, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings (Lecture Notes in Computer Science), Ilya Sergey
(Ed.), Vol. 13240. Springer, 57–84. DOI:http://dx.doi.org/10.1007/978-3-030-99336-8_3

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. 2019. Quantitative

separation logic: a logic for reasoning about probabilistic pointer programs. Proc. ACM Program. Lang. 3, POPL (2019),

34:1–34:29. DOI:http://dx.doi.org/10.1145/3290347
P. N. Benton. 1994. A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models (Extended Abstract). In International

Workshop on Computer Science Logic (CSL), Kazimierz, Poland (Lecture Notes in Computer Science), Leszek Pacholski and

Jerzy Tiuryn (Eds.), Vol. 933. Springer, 121–135. DOI:http://dx.doi.org/10.1007/BFb0022251
Francis Borceux. 1994. Handbook of Categorical Algebra: Volume 2, Categories and Structures. Vol. 2. Cambridge University

Press.

Kenta Cho and Bart Jacobs. 2019. Disintegration and Bayesian inversion via string diagrams. Math. Struct. Comput. Sci. 29, 7
(2019), 938–971. DOI:http://dx.doi.org/10.1017/S0960129518000488

Roy L Crole. 1993. Categories for types. Cambridge University Press.

Fredrik Dahlqvist, Alexandra Silva, Vincent Danos, and Ilias Garnier. 2018. Borel kernels and their approximation, categori-

cally. Electronic Notes in Theoretical Computer Science (2018).
Ugo Dal Lago and Charles Grellois. 2019. Probabilistic Termination by Monadic Affine Sized Typing. ACM Trans. Program.

Lang. Syst. 41, 2 (2019), 10:1–10:65. DOI:http://dx.doi.org/10.1145/3293605
Vincent Danos and Thomas Ehrhard. 2011. Probabilistic coherence spaces as a model of higher-order probabilistic computa-

tion. Information and Computation 209, 6 (2011), 966–991.

David Darais, Ian Sweet, Chang Liu, and Michael Hicks. 2019. A language for probabilistically oblivious computation.

Proceedings of the ACM on Programming Languages 4, POPL (2019), 1–31.

Devdatt P. Dubhashi and Desh Ranjan. 1998. Balls and bins: A study in negative dependence. Random Struct. Algorithms 13,
2 (1998), 99–124.

Thomas Ehrhard, Michele Pagani, and Christine Tasson. 2017. Measurable cones and stable, measurable functions: a model

for probabilistic higher-order programming. In Principles of Programming Languages (POPL).
Thomas Ehrhard, Michele Pagani, and Christine Tasson. 2018. Full Abstraction for Probabilistic PCF. J. ACM 65, 4 (2018),

23:1–23:44. DOI:http://dx.doi.org/10.1145/3164540
Tobias Fritz. 2020. A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics.

Advances in Mathematics 370 (2020), 107239.
Andrew K Hirsch and Deepak Garg. 2022. Pirouette: higher-order typed functional choreographies. Proceedings of the ACM

on Programming Languages 6, POPL (2022), 1–27.

Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo Deniélou, Dimitris Mostrous, Luca

Padovani, António Ravara, Emilio Tuosto, Hugo Torres Vieira, and Gianluigi Zavattaro. 2016. Foundations of Session Types

and Behavioural Contracts. ACMComput. Surv. 49, 1, Article 3 (apr 2016), 36 pages. DOI:http://dx.doi.org/10.1145/2873052
Martin Hyland and Andrea Schalk. 2003. Glueing and orthogonality for models of linear logic. Theoretical computer science

294, 1-2 (2003), 183–231.

Peter T Johnstone, Stephen Lack, and Paweł Sobociński. 2007. Quasitoposes, quasiadhesive categories and Artin glueing. In

International Conference on Algebra and Coalgebra in Computer Science. Springer, 312–326.
Paul C Kainen. 1971. Weak adjoint functors. Mathematische Zeitschrift 122 (1971), 1–9.
Neel Krishnaswami. 2011. A new lambda calculus for bunched implications. (2011). https://semantic-domain.blogspot.com/

2011/07/new-lambda-calculus-for-bunched.html [Online; accessed 2023-07-09].

Tom Leinster. 2014. Basic category theory. Vol. 143. Cambridge University Press.

Paul Blain Levy. 2001. Call-by-push-value. Ph.D. Dissertation.
John M Li, Amal Ahmed, and Steven Holtzen. 2023. Lilac: a Modal Separation Logic for Conditional Probability. Programming

Language Design and Implementation (PLDI) (2023).

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

http://dx.doi.org/10.1007/978-3-030-99336-8_3
http://dx.doi.org/10.1145/3290347
http://dx.doi.org/10.1007/BFb0022251
http://dx.doi.org/10.1017/S0960129518000488
http://dx.doi.org/10.1145/3293605
http://dx.doi.org/10.1145/3164540
http://dx.doi.org/10.1145/2873052
https://semantic-domain.blogspot.com/2011/07/new-lambda-calculus-for-bunched.html
https://semantic-domain.blogspot.com/2011/07/new-lambda-calculus-for-bunched.html

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1:27

Elisabet Lobo Vesga, Alejandro Russo, and Marco Gaboardi. 2021. A Programming Language for Data Privacy with Accuracy

Estimations. ACM Trans. Program. Lang. Syst. 43, 2 (2021), 6:1–6:42. DOI:http://dx.doi.org/10.1145/3452096
Saunders Mac Lane. 2013. Categories for the working mathematician. Vol. 5. Springer Science & Business Media.

Eugenio Moggi. 1991. Notions of Computation and Monads. Inf. Comput. 93, 1 (1991), 55–92. DOI:http://dx.doi.org/10.1016/
0890-5401(91)90052-4

Fabrizio Montesi. 2014. Choreographic Programming. Ph.D. Dissertation. Denmark.

Peter W. O’Hearn. 2003. On bunched typing. J. Funct. Program. 13, 4 (2003), 747–796. DOI:http://dx.doi.org/10.1017/
S0956796802004495

Peter W. O’Hearn. 2007. Separation logic and concurrent resource management. In Proceedings of the 6th International
Symposium on Memory Management, ISMM 2007, Montreal, Quebec, Canada, October 21-22, 2007, Greg Morrisett and

Mooly Sagiv (Eds.). ACM, 1. DOI:http://dx.doi.org/10.1145/1296907.1296908
Peter W. O’Hearn and David J. Pym. 1999. The logic of bunched implications. Bull. Symb. Log. 5, 2 (1999), 215–244. DOI:

http://dx.doi.org/10.2307/421090

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning about Programs that Alter Data Structures.

In Computer Science Logic, 15th International Workshop, CSL 2001. 10th Annual Conference of the EACSL, Paris, France,
September 10-13, 2001, Proceedings (Lecture Notes in Computer Science), Laurent Fribourg (Ed.), Vol. 2142. Springer, 1–19.

DOI:http://dx.doi.org/10.1007/3-540-44802-0_1
Judea Pearl and Azaria Paz. 1986. Graphoids: Graph-Based Logic for Reasoning about Relevance Relations or When would

x tell you more about y if you already know z?. In European Conference on Artificial Intelligence (ECAI), Brighton, UK,
Benedict du Boulay, David C. Hogg, and Luc Steels (Eds.). North-Holland, 357–363.

David J. Pym, Peter W. O’Hearn, and Hongseok Yang. 2004. Possible worlds and resources: the semantics of BI. Theor.
Comput. Sci. 315, 1 (2004), 257–305. DOI:http://dx.doi.org/10.1016/j.tcs.2003.11.020

Jason Reed and Benjamin C. Pierce. 2010. Distance makes the types grow stronger: a calculus for differential privacy. In ACM
SIGPLAN International Conference on Functional Programming (ICFP), Baltimore, Maryland, Paul Hudak and Stephanie

Weirich (Eds.). ACM, 157–168. DOI:http://dx.doi.org/10.1145/1863543.1863568
Alex K Simpson. 1992. Recursive types in Kleisli categories. Unpublished manuscript, University of Edinburgh (1992).

Ian Stark. 1996. Categorical models for local names. Lisp and Symbolic Computation 9, 1 (1996), 77–107.

Dario Maximilian Stein. 2021. Structural foundations for probabilistic programming languages. Ph.D. Dissertation. University
of Oxford.

Christine Tasson and Thomas Ehrhard. 2019. Probabilistic call by push value. Logical Methods in Computer Science (2019).

A SOUNDNESS PROOF _INI

We remind the readers the logical relation for types:

RB = 𝐷 (B)
R𝜏1⊗𝜏2 = {`1 ⊗ `2 ∈ 𝐷 (J𝜏1K × J𝜏2K) | `𝑖 ∈ R𝜏𝑖 }
R𝜏1×𝜏2 = {` ∈ 𝐷 (J𝜏1K × J𝜏2K) | 𝜋𝑖 (`) ∈ R𝜏𝑖 for 𝑖 ∈ {1, 2}}
R𝜏1⊸𝜏2 = {` ∈ 𝐷 (J𝜏1K→ 𝐷 (J𝜏2K)) | ∀` ′ ∈ R𝜏1 , 𝑥 ← ` ′; 𝑓 ← `; 𝑓 (𝑥) ∈ 𝑅𝜏2 }
R𝜏1→𝜏2 = {` ∈ 𝐷 (J𝜏1K→ 𝐷 (J𝜏2K)) | ∀` ′ ∈ 𝐷 (𝜏1 × (𝜏1 → 𝐷 (𝜏2)))

` ′
1
∈ R𝜏1 ∧ ` ′

2
= ` ⇒ (𝑥, ℎ) ← ` ′;ℎ(𝑥) ∈ 𝑅𝜏2 }.

And for contexts:

R · = 1

R𝑥 :𝜏 = R𝜏
RΓ1,Γ2 = {` ∈ 𝐷 (JΓ1K × JΓ2K) | 𝜋𝑖 (`) ∈ RΓ𝑖 }
R𝑟 [Δ] = RΔ

R · = 1

R𝑥 :𝜏 = R𝜏
RΔ1;Δ2

= {`1 ⊗ `2 ∈ 𝐷 (JΔ1K × JΔ2K) | `𝑖 ∈ RΔ𝑖
}

R𝑟 [Γ] = RΓ

Theorem A.1. If Γ ⊢ 𝑡 : 𝜏 and ` ∈ RΓ then (𝑥 ← `; J𝑡K (𝑥)) ∈ R𝜏 .

Proof. Let the distribution above be a . We prove a ∈ R𝜏 by induction on the derivation of

Γ ⊢ 𝑡 : 𝜏 . When the context is separated, we may assume that 𝑥 ← ` is given by the list of the

marginal distributions, in which case we will represent them as a list `𝑖 .

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

http://dx.doi.org/10.1145/3452096
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1017/S0956796802004495
http://dx.doi.org/10.1017/S0956796802004495
http://dx.doi.org/10.1145/1296907.1296908
http://dx.doi.org/10.2307/421090
http://dx.doi.org/10.1007/3-540-44802-0_1
http://dx.doi.org/10.1016/j.tcs.2003.11.020
http://dx.doi.org/10.1145/1863543.1863568

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Anon.

Const/Coin/Var. Trivial. For instance, Var𝑆 : a = 𝑥𝑖 ← `𝑖 ; return 𝑥𝑖 = `𝑖 is in R𝜏𝑖 by assumption.

× Intro. We have a = 𝛾 ← `;𝑥 ← J𝑡1K (𝛾);𝑦 ← J𝑡2K (𝛾); return (𝑥,𝑦). It is straightforward to

show that the first marginal of a is 𝛾 ← `;𝑥 ← J𝑡1K (𝛾); return 𝑥 which, by the induction

hypothesis, in an element of R𝜏1 ; similarly, the second marginal of a is an element of R𝜏2 .
× Elim. We have a = 𝛾 ← `; (𝑥,𝑦) ← J𝑡K (𝛾); return 𝑥 . By the induction hypothesis, J𝑡K (𝛾) ∈

R𝜏1×𝜏2 and, by assumption, its marginals are elements of R𝜏1 and R𝜏2 .
⊗ Intro. Let ` be the distribution corresponding to Δ1, and let [be the distribution corresponding

to Δ2. Since 𝐷 is a commutative monad [Borceux 1994], we may apply associativity and

commutativity to show:

a = 𝑥 ′← `;𝑦 ′← [;𝑥 ← J𝑡1K (𝑥 ′);𝑦 ← J𝑡2K (𝑦 ′); return (𝑥,𝑦)
= 𝑥 ′← `;𝑥 ← J𝑡1K (𝑥 ′);𝑦 ′← [;𝑦 ← J𝑡2K (𝑦 ′); return (𝑥,𝑦)
= (𝑥 ′← `;𝑥 ← J𝑡1K (𝑥 ′); return 𝑥) ⊗ (𝑦 ′← [;𝑦 ← J𝑡2K (𝑦 ′); return 𝑦) = a1 ⊗ a2 .

Furthermore, by induction hypothesis, a𝑖 ∈ R𝜏𝑖 so a = a1 ⊗ a2 ∈ R𝜏1⊗𝜏2 as desired.
⊗ Elim. Let `𝑖 be the sequence of distributions corresponding to Γ1, and let [𝑖 be the sequence of

distributions corresponding to Γ2. We have:

a = 𝑥𝑖 ← `𝑖 ;𝑦𝑖 ← [𝑖 ; (𝑥,𝑦) ← J𝑡K (𝑥𝑖);
= 𝑥𝑖 ← `𝑖 ; (𝑥,𝑦) ← J𝑡K (𝑥𝑖);𝑦𝑖 ← [𝑖 ; J𝑢K (𝑦𝑖 , 𝑥,𝑦)
= (𝑥,𝑦) ← a1 ⊗ a2;𝑦𝑖 ← [𝑖 ; J𝑢K (𝑦𝑖 , 𝑥,𝑦)
= 𝑦𝑖 ← [𝑖 ;𝑥 ← a1;𝑦 ← a2; J𝑢K (𝑦𝑖 , 𝑥,𝑦)

where the third equality is by the induction hypothesis from the first premise. By the

induction hypothesis from the second premise, the final distribution is in R𝜏 , as desired.
Abstraction. By unfolding the definitions, we need to show

𝑥 ← `; 𝑓 ← (𝑥𝑖 ← `𝑖 ;𝛿_𝑥.J𝑡K(𝑥𝑖)); 𝑓 (𝑥) ∈ R𝜏2 ,
for some ` ∈ R𝜏1 . This distribution is equal to 𝑥𝑖 ← `𝑖 ;𝑥 ← `; 𝑓 ← 𝛿_𝑥.J𝑡K(𝑥𝑖) ; 𝑓 (𝑥), by
associativity and commutativity. By the induction hypothesis and the fact that 𝛿 is the unit

of the monad, we can conclude this case.

Application. This case follows directly from the induction hypotheses.

Shared Abstraction. By unfolding the definitions, we need to show that for every joint distri-

bution ` ′ over J𝜏1K and J𝜏1K→ 𝐷 (J𝜏2K) such that its first marginal is an element of R𝜏1 and
its second marginal is equal to 𝛾 ← `; J_𝑥 . 𝑡K (𝛾) then ((𝑥, 𝑓) ← ` ′; 𝑓 (𝑥)) ∈ R𝜏2. The full
proof for this case is not as straightforward as the other ones. Here we will only present

the case of when the function 𝛾 ↦→ J_𝑥. 𝑡K (𝛾) is injective. By unfolding the definitions we

obtain:

(𝑥, 𝑓) ← ` ′; 𝑓 (𝑥)

=
∑︁
𝑎,𝑓

` ′(𝑎, 𝑓) 𝑓 (𝑎)

=
∑︁
𝑎,𝛾

` ′(𝑎, _𝑥 . J𝑡K (𝛾, 𝑥)) J𝑡K (𝛾, 𝑎)

The second equation is only true under the injectivity hypothesis. The induction hypothesis

for Γ, 𝑥 : 𝜏1 ⊢ 𝑡 : 𝜏2 says that for every joint distribution ` ′′ over Γ and 𝜏1 such that its

marginals are elements of RΓ and R𝜏1 , respectively, (𝛾, 𝑥) ← ` ′′; J𝑡K (𝛾, 𝑥) ∈ R𝜏2 . Consider

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1:29

the distribution ` ′′(𝛾, 𝑎) = ` ′(𝑎, _𝑥 . J𝑡K (𝛾, 𝑥)). We can easily show that ` ′′
2
= ` ′

1
∈ R𝜏1 and

since ` ′
2
= 𝛾 ← `; J_𝑥. 𝑡K (𝛾), ` ∈ RΓ and 𝛾 ↦→ J_𝑥 . 𝑡K (𝛾) is injective, ` ′

2
(_𝑥. J𝑡K (𝛾, 𝑥)) =

` (𝛾). By inspection, this case follows from the induction hypothesis by choosing the distri-

bution ` ′′. The full case can be found below.

Shared Application. Let ` ∈ RΓ , Γ ⊢ 𝑡 : 𝜏1 → 𝜏2 and Γ ⊢ 𝑢 : 𝜏1. We have to show that

(𝛾 ← `; (𝑓 , 𝑥) ← (J𝑡K (𝛾) ⊗ J𝑥K (𝛾)); 𝑓 (𝑥)) ∈ R𝜏2 . This follows by applying the induction

hypothesis to Γ ⊢ 𝑢 : 𝜏1 and Γ ⊢ 𝑡 : 𝜏1 → 𝜏2, where the joint distribution over J𝜏1K× (J𝜏1K→
𝐷J𝜏2K) is (𝛾 ← `; (J𝑡K (𝛾) ⊗ J𝑥K (𝛾)).

Context Modal Rules Follows directly from the induction hypothesis. □

In order for this proof to go through in the general case, we need a definition from probability

theory.

Definition A.2. Let 𝑓 : 𝐴→ 𝐷 (𝐵) and ` ∈ 𝐷 (𝐴), we define 𝑓 −1` : 𝐵 → 𝐷 (𝐴)

𝑓 −1` (𝑏, 𝑎) =
{

` (𝑎) 𝑓 (𝑎,𝑏)∑
𝑎′ ` (𝑎′) 𝑓 (𝑎′,𝑏) if

∑
𝑎′ ` (𝑎′) 𝑓 (𝑎′, 𝑏) > 0

` (𝑎) otherwise

The function above is basically a different presentation of Bayes’ theorem. At a more conceptual

level, this construction can be seen as a “weak” inverse of 𝑓 in the following sense:

Lemma A.3. Let ` : 𝐷 (𝐴) and 𝑓 : 𝐴→ 𝐷 (𝐵), then (𝑥 ← `;𝑦 ← 𝑓 (𝑥); 𝑓 −1` (𝑦)) = `.

We can now present the full proof for the shared abstraction case. Assume that the soundness

theorem holds for a program Γ, 𝑥 : 𝜏1 ⊢ 𝑡 : 𝜏2 and that ` ′ ∈ 𝐷 (J𝜏1K × (J𝜏1K → 𝐷 (J𝜏2K))) satisfies
` ′
1
∈ R𝜏1 and ` ′2 = 𝛾 ← `; J_𝑥. 𝑡K (𝛾), for some ` ∈ RΓ . Furthermore, let us define 𝐹 (𝛾) = J_𝑥. 𝑡K (𝛾).

In this case we can show

(𝑥, 𝑓) ← ` ′; 𝑓 (𝑥)

=
∑︁
𝑎,𝑓

` ′(𝑎, 𝑓) 𝑓 (𝑎)

=
∑︁
𝑎,𝛾

` ′(𝑎, _𝑥 . J𝑡K (𝛾, 𝑥))𝐹−1` (_𝑥. J𝑡K (𝑥,𝛾), 𝛾) J𝑡K (𝑎,𝛾)

The second equation holds because for every 𝛾 ,
∑

𝑓
𝐹 (𝛾,𝑓)∑
𝑓 𝐹 (𝛾,𝑓) = 1 and the only functions in the

support of ` ′
2
are of the form J_𝑥 . 𝑡K (𝛾), for some 𝛾 . Finally, by applying the induction hypothesis

to Γ, 𝑥 : 𝜏1 ⊢ 𝑡 : 𝜏2 with the joint distribution ` ′′ over the context equal to ((𝑥, 𝑓) ← ` ′;𝛾 ←
𝐹−1` (𝑓); return (𝑥,𝛾). we can show by a direct calculation that its first marginal is equal to ` ′

1
∈ R𝜏1 .

In order to reason about its second marginal, consider the equalities.

` ′′
2
= (𝑥, 𝑓) ← ` ′;𝛾 ← 𝐹−1` (𝑓); return 𝛾

= (𝑥, 𝑓) ← ` ′; 𝐹−1` (𝑓)
= 𝛾 ← `; 𝑓 ← 𝐹 (𝛾); 𝐹−1` (𝑓) = `

Furthermore, by unfolding the definitions, we can show that (𝑥,𝛾) ← ` ′′
2
; J𝑡K (𝛾, 𝑥) = (𝑥, 𝑓) ←

` ′; 𝑓 (𝑥) , concluding this case.

B CATEGORICAL SOUNDNESS PROOF FOR _2INI: DETAILS
B.1 Category of Models
A model for _2

INI
is given by a CD category M with distributive coproducts, a SMCC C with

weak coproducts and a lax monoidal functorM : M → C. A morphism between two models

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Anon.

case (in1𝑀) of (|in1𝑥 ⇒ 𝑁1 | in2𝑥 ⇒ 𝑁2) ≡ 𝑁1{𝑀/𝑥}
case (in2𝑀) of (|in1𝑥 ⇒ 𝑁1 | in2𝑥 ⇒ 𝑁2) ≡ 𝑁2{𝑀/𝑥}

case𝑁 of (|in1𝑥 ⇒ 𝑀 | in2𝑥 ⇒ 𝑀) ≡ 𝑀{𝑁 /𝑥}

let 𝑥 = 𝑡 in 𝑥 ≡ 𝑡

let 𝑥 = 𝑥 in 𝑡 ≡ 𝑡

let 𝑦 = (let 𝑥 = 𝑀1 in𝑀2) in𝑀3 ≡ let 𝑥 = 𝑀1 in (let 𝑦 = 𝑀2 in𝑀3)

(_𝑥. 𝑡) 𝑢 ≡ 𝑡{𝑢/𝑥}
(_𝑥 . 𝑡 𝑥) ≡ 𝑡

let 𝑥1 ⊗ 𝑥2 = 𝑡1 ⊗ 𝑡2 in 𝑢 ≡ 𝑢{𝑡1/𝑥1}{𝑡2/𝑥2}

case (in1𝑡) of (|in1𝑥 ⇒ 𝑢1 | in2𝑥 ⇒ 𝑢2) ≡ 𝑢1{𝑡/𝑥}
case (in2𝑡) of (|in1𝑥 ⇒ 𝑢1 | in2𝑥 ⇒ 𝑢2) ≡ 𝑢2{𝑡/𝑥}

sample 𝑡 as 𝑥 in 𝑥 ≡ 𝑡

sample (sample 𝑡 as 𝑥 in𝑀) as 𝑦 in 𝑁 ≡ sample 𝑡 as 𝑥 in (let 𝑦 = 𝑀 in 𝑁)

Fig. 11. (Selected Rules) Equational Theory: _2INI

(M1,C1,M1) and (M2,C2,M2) is a pair of functors (𝐹 : M1 → M2,𝐺 : C1 → C2) that preserves
the logical connectives up-to isomorphism. By defining morphism composition component-wise

and the pair (𝑖𝑑C, 𝑖𝑑M) as the identity morphism, this structure constitutes a category which we

call Mod.
In categorical treatments of type theories it is important to show that the equational theory is a

sound approximation of the categorical semantics. Most of the _2
INI

equational theory is depicted in

Figure 11. In the case of CD categories, there are some subtleties when defining their equational

theory —more details can be found in Chapter 2 of [Stein 2021]. The equational theory of symmetric

monoidal closed categories is very similar to the simply-typed case [Crole 1993]. Since the language

does not use any fancy type theoretic constructions, the soundness property is straightforward to

prove by induction on the typing derivations.

Theorem B.1. Let (C,M,M) be a _2INI model. If Γ ⊢𝑁𝐼 𝑀 ≡ 𝑁 : 𝜏 then J𝑀K = J𝑁 K and if
Γ ⊢𝐼 𝑡 ≡ 𝑢 : 𝜏 then J𝑡K = J𝑢K.

The main subtlety is that we have to be a bit more precise in the presentation of the equational

theory for the I language. Note that the sample construct can sample simultaneously from any

number of distributions, while lax monoidal functors only provide a binary sampling operator.

Formally this is resolved by restricting sample to up to two arguments and adding the following

rules to the equational theory:

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1:31

Γ𝑖 ⊢𝐼 𝑡𝑖 :M𝜏𝑖 𝑖 ∈ {1, 2, 3}
Γ1, Γ2, Γ3 ⊢𝐼 sample 𝑡1, (sample 𝑡2, 𝑡3 as 𝑥2, 𝑥3 in (𝑥2, 𝑥3)) as 𝑥1, 𝑦 in (𝑥1, 𝜋1 𝑦, 𝜋2 𝑦) ≡

sample (sample 𝑡1, 𝑡2 as 𝑥1, 𝑥2 in (𝑥1, 𝑥2)), 𝑡3 as 𝑦, 𝑥3 in (𝜋1 𝑦, 𝜋2 𝑦, 𝑥3) :M(𝜏1 × 𝜏2 × 𝜏3)

Γ ⊢𝐼 𝑡 :M𝜏

Γ ⊢𝐼 sample 𝑡, (sample _ as _ in ()) as 𝑥,𝑦 in 𝑥 ≡ 𝑡 :M𝜏

Γ ⊢𝐼 𝑡 :M𝜏

Γ ⊢𝐼 sample (sample _ as _ in ()), 𝑡 as 𝑥,𝑦 in 𝑦 ≡ 𝑡 :M𝜏

Note that even though the first rule looks intimidating, it is basically the lax monoidal com-

mutativity diagram in syntax form, which says that the sample operation is associative and, as a

consequence, there is a uniqueway of defining the𝑛-ary operation sample 𝑡1, . . . 𝑡𝑛 as𝑥1, . . . , 𝑥𝑛 in𝑀 ,

for 𝑛 ≥ 2.

An important _2
INI

model is the syntactic object Syn, which is a triple (Syn𝑙𝑖𝑛, Syn𝐶𝐷 ,M), where
Syn𝐶𝐷 is the syntactic category of CD categories with coproducts while Syn𝑙𝑖𝑛 is the syntactic

category of symmetric monoidal closed categories withweak coproducts and an applicativemodality

andM is the type constructor for the modality. Concretely each of these categories have types

as objects and morphisms are programs with one free variables modulo the equational theories

presented in Figure 11. In order for these to be considered categories each syntax must satisfy

the substitution property, which has been proved in [Azevedo de Amorim 2023] for the sum-less

version of _2
INI

, which is not hard to extend to the version with sums. Finally, it follows by a simple

inspection that Syn is a _2
INI

model.

Lemma B.2. Syn is a _2INI model.

Theorem B.3. Syn is the initial object of Mod.

Proof. Let (C,M,M) be a model. It is possible to construct a morphism J·K : Syn→ (C,M,M)
by defining two functors J·K

1
: Syn𝑙𝑖𝑛 → C and J·K

2
: Syn𝐶𝐷 → M. Since Syn𝑙𝑖𝑛 and Syn𝐶𝐷 are

freely generated, the action of the functors on objects is characterized by a simple induction on the

types. The action on morphisms is defined by induction on the typing derivation using Figure 7.

The proof that this function is well-defined follows from Theorem B.1. Uniqueness follows by

assuming the existence of two semantics and showing, by induction on the typing derivation, that

they are equal. □

B.2 Glued category
We construct the logical relations category by using a comma category. Formally, a comma

category along functors 𝐹 : C1 → D and 𝐺 : C2 → D has triples (𝐴,𝑋,ℎ) as objects, where 𝐴
is an C1 object, 𝑋 is an C2 objects and ℎ : 𝐹𝐴 → 𝐺𝑋 , and its morphisms (𝐴,𝑋,ℎ) → (𝐴′, 𝑋 ′, ℎ′)
are pairs 𝑓 : 𝐴 → 𝐴′ and 𝑔 : 𝑋 → 𝑋 ′ making certain diagrams commute. In computer science

applications of gluing, it is usually assumed that 𝐹 is the identity functor and D = Set. Furthermore,

to simplify matters, sometimes it is also assumed that we work with full subcategories of the glued

category, for instance we can assume that we only want objects such that 𝐴→ 𝐺𝐵 is an injection,

effectively representing a subset of 𝐺𝐵.

Therefore, in the setting we are interested in a glued category along a functor 𝐺 : C→ Set has
pairs (𝐴,𝑋 ⊆ 𝐺 (𝐴)) as objects and its morphisms (𝐴,𝑋) → (𝐵,𝑌) is a C morphism 𝑓 : 𝐴 → 𝐵

such that𝐺 (𝑓) (𝑋) ⊆ 𝑌 . Note that this condition can be seen as a more abstract way of phrasing the

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1:32 Anon.

usual logical relations interpretation of arrow types: mapping related things to related things. At an

intuitive level we want to use the functor 𝐺 to map types to predicates satisfied by its inhabitants.

Now, we are ready to define the glued category and show that it constitutes a model for the

language. Given a triple (M,C,M) we define the triple (M,Gl(C), M̃), where the objects of Gl(C)
are pairs (𝐴 ∈ C, 𝑋 ⊆ C(𝐼 , 𝐴)) and the morphisms are C morphisms that preserve 𝑋 , i.e. we are

gluing C along the global sections functor C(𝐼 ,−). The functorM : M→ C is lifted to a functor

M̃ : C→ Gl(C). Now we have to show that the triple is indeed a model of our language.

Something that simplifies our proofs is that morphisms inGl(C) are simply morphisms in Cwith

extra structure and composition is kept the same. Therefore, once we establish that a Cmorphism is

also a Gl(C) morphism all we have to do in order to show that a certain Gl(C) diagram commutes

is to show that the respective C diagram commutes.

Theorem B.4. Gl(C) is a SMCC and weak coproducts.

Proof. Let (𝐴,𝑋) and (𝐵,𝑌) be Gl(C) objects, we define (𝐴,𝑋) ⊗ (𝐵,𝑌) = (𝐴 ⊗ 𝐵, {𝑓 : 𝐼
�−→

𝐼 ⊗ 𝐼
𝑓𝐴⊗𝑓𝐵−−−−−→ 𝐴 ⊗ 𝐵 | 𝑓𝐴 ∈ 𝑋, 𝑓𝐵 ∈ 𝑌 }); the monoidal unit is given by (𝐼 , {𝑖𝑑𝐼 }).

Let (𝐴,𝑋) and (𝐵,𝑌) be Gl(C) objects, we define (𝐴,𝑋) ⊸ (𝐵,𝑌) = (𝐴 ⊸ 𝐵, {𝑓 : 𝐼 → (𝐴 ⊸
𝐵) | ∀𝑓𝐴 ∈ 𝑋𝐴, 𝜖𝐵 ◦ (𝑓𝐴 ⊗ 𝑓) ∈ 𝑋𝐵}, where 𝜖𝐵 : (𝐴 ⊸ 𝐵) ⊗ 𝐴 → 𝐵 is the counit of the monoidal

closed adjunction.

To show 𝐴 ⊗ (−) ⊣ 𝐴 ⊸ (−) we can use the (co)unit characterization of adjunctions, which

corresponds to the existence of two natural transformations 𝜖𝐵 : 𝐴 ⊗ (𝐴 ⊸ 𝐵) → 𝐵 and [𝐵 : 𝐵 →
𝐴 ⊸ (𝐴⊗𝐵) such that 1𝐴⊗− = 𝜖 (𝐴⊗−) ◦ (𝐴⊗−)[and 1𝐴⊸− = (𝐴 ⊸ −)𝜖 ◦[(𝐴 ⊸ −), where 1𝐹 is

the identity natural transformation between 𝐹 and itself. By choosing these natural transformations

to be the same as in C, since the adjoint equations hold for them by definition, all we have to do is

show that they are also Gl(C) morphisms, which follows by unfolding the definitions.

Finally, we can show that Gl(C) has weak coproducts. Let (𝐴1, 𝑋1) and (𝐴2, 𝑋2) be Gl(C) objects,
we define (𝐴1, 𝑋1) ⊕ (𝐴2, 𝑋2) = (𝐴1 ⊕ 𝐴2, {ini 𝑓𝑖 | 𝑓𝑖 ∈ 𝑋𝑖 }). To show that it satisfies the (weak)

universal property of sum types. Let 𝑓1 : (𝐴1, 𝑋1) → (𝐵,𝑌) and 𝑓2 : (𝐴2, 𝑋2) → (𝐵,𝑌) be Gl(C)
morphisms. Consider the C morphism [𝑓1, 𝑓2]. We want to show that this morphism is also a Gl(C)
morphism. Consider 𝑔 ∈ 𝑋𝐴1⊕𝐴2

which, by assumption, 𝑔 = in1𝑔1 or 𝑔 = in2𝑔2. By case analysis

and the facts 𝑓𝑖 ◦ 𝑔𝑖 ∈ 𝑌 and [𝑓1, 𝑓2] ◦ in𝑖𝑔𝑖 = 𝑓𝑖 ◦ 𝑔𝑖 we can conclude that [𝑓1, 𝑓2] is indeed a Gl(C)
morphism. □

These constructions are known in the categorical logic literature [Hyland and Schalk 2003],

but since they are simple enough we think that it is helpful to also present it here. Since every

construction so far uses the same objects as the ones in C, it is possible to show that the forgetful

functor𝑈 : Gl(C) → C preserves every type constructor and is aMod morphism. Next, we have

to liftM to the glued category. This follows from general category theoretic observations.

Definition B.5. If 𝑋 is anM object then M̃(𝑋) = (M(𝑋), {Y;M 𝑓 | 𝑓 ∈ M(1, 𝑋)}. Furthermore, if

𝑓 : 𝑋 → 𝑌 is anM morphism then M̃(𝑓) =M(𝑓).

Lemma B.6. The operation M̃ : M→ Gl(C) is a lax monoidal functor.

Proof. By assumption thatM is a functor, it is mostly immediate that𝑀 is a functor, we only

have to show thatM 𝑓 is a morphism in the glued category. Let Y;M𝑔 be a plot in the domain of

M 𝑓 . In this case, Y;M𝑔;M 𝑓 = Y;M(𝑔; 𝑓), which implies functoriality.

In order to prove lax monoidality, it suffices to prove that the operations Y : 𝐼 → M1 and

` :M𝑋 ⊗ M𝑌 →M(𝑋 × 𝑌) can be lifted to the glued category, in which case lax monoidality

follows by the assumption thatM is lax monoidal. First, Y lifts to the glued category because

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1:33

Syn

(M,Gl(C), M̃) (M,C,M)

L·M
J·K

𝑈

Fig. 12. The essence of the soundness proof

𝑖𝑑𝐼 ; Y = Y;M(𝑖𝑑1). Next, showing that ` lifts as well is less straightforward: it follows from the

naturality of `, the naturality of 𝐴 ⊗ 𝐼 � 𝐴 and the lax monoidal diagrams. □

Thus, the glued category is a _2
INI

model.

Theorem B.7. The triple (M,Gl(C), M̃) is a Mod object.

There is a forgetful map from the glued model to the original model.

Lemma B.8. There is aMod morphism𝑈 : (M,Gl(C), M̃) → (M,C,M).
Finally, by initiality of Syn, we can prove

Lemma B.9. There is aMod morphism L·M : Syn→ (M,Gl(C), M̃).
With this map in hand, we may now construct a functor 𝑈 ◦ L·M : Syn→ (M,C,M) which, by

initiality of Syn, is equal to the functor J·K, as illustrated by Figure 12.

B.3 General Soundness Theorem
Theorem B.10. If · ⊢𝐼 𝑡 : 𝜏 , then J𝑡K ∈ 𝑋𝜏 .

Proof. We know that J·K = 𝑈 ◦ L·M and that L𝑡M is a Gl(C) morphism. As such we have that

J𝑡K = L𝑡M = L𝑡M ◦ 𝑖𝑑𝐼 ∈ 𝑋𝜏 , since, by definition, 𝑖𝑑𝐼 ∈ 𝑋𝐼 . □

Theorem 5.3 follows immediately, as a corollary.

Corollary B.11. If · ⊢𝐼 𝑡 : M𝜏1 ⊗ M𝜏2 then J𝑡K can be factored as two morphisms J𝑡K = 𝑓1 ⊗ 𝑓2,
where 𝑓1 : 𝐼 →M J𝜏1K and 𝑓2 : 𝐼 →M J𝜏2K.

Proof. By Theorem B.10, if · ⊢𝐼 𝑡 :M𝜏1 ⊗M𝜏2, then J𝑡K ∈ 𝑋M𝜏1⊗M𝜏2 which, by unfolding the

definitions, means that there exists 𝑓1 : 𝐼 →M J𝜏1K and 𝑓2 : 𝐼 →M J𝜏2K such that J𝑡K = 𝑓1 ⊗ 𝑓2. □

B.4 Adding Base Types and Constants
Suppose that we want to add a new base type to _2

INI
and operations over it. If the type and

operation are supposed to be added to the NI layer, then this addition is as simple as giving the

type and operation a semantics in M.

If, however, we want to add a new type to the I layer then we must be careful, since besides it

being necessary to give semantics in C, it becomes necessary showing that the semantics lifts to

the glued category Gl(C). For instance, suppose that we want to add a type 𝜎 and an operation

Γ ⊢ op : 𝜎 . If there is an intended semantics J𝜎K and JopK in C we must define a predicate 𝑋𝜎

which could, for example, be equal to C(𝐼 , J𝜎K), and then we have to prove that for every 𝑝 ∈ 𝑋Γ ,

𝑝; JopK ∈ 𝑋𝜎 .

Something interesting about this approach is that the choice of 𝑋𝜎 is not unique. Consider, for

instance, in the probabilistic case, a different way to define deterministic if-statements is by adding a

constantM𝑑𝑒𝑡 (2) which is interpreted as (M(2), {𝛿0, 𝛿1}) in the glued model. Now we can soundly

add the constant if𝑑𝑒𝑡 :M𝑑𝑒𝑡 (2) ⊸ 𝜏 ⊸ 𝜏 ⊸ 𝜏 .

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1:34 Anon.

C MEASURABLE SETS AND MARKOV KERNELS
A measurable space combines a set with a collection of subsets, describing the subsets that can

be assigned a well-defined measure or probability.

Definition C.1. Given a set 𝑋 , a 𝜎-algebra Σ𝑋 ⊆ P(𝑋) is a set of subsets such that (i) 𝑋 ∈ Σ𝑋 ,
and (ii) Σ𝑋 is closed complementation and countable union. A measurable space is a pair (𝑋, Σ𝑋),
where 𝑋 is a set and Σ𝑋 is a 𝜎-algebra.

A measurable function between measurable spaces (𝑋, Σ𝑋) and (𝑌, Σ𝑌) is a function 𝑓 : 𝑋 → 𝑌

such that for every 𝐴 ∈ Σ𝑌 , 𝑓
−1 (𝐴) ∈ Σ𝑋 , where 𝑓 −1 is the inverse image function. Measurable

spaces and measurable functions form a category Meas.

Definition C.2. Standard Borel spaces (𝑋, Σ𝑋) are spaces such that 𝑋 can be equipped with a

metric such that 𝑋 is, as a metric space, complete and separable and Σ𝑋 is the 𝜎-algebra generated

by the metric.

Example C.3. For every 𝑛 ∈ N, R𝑛
with its standard 𝜎-algebra is a standard Borel space.

Definition C.4. A probability measure is a function `𝑋 : Σ𝑋 → [0, 1] such that: (i) ` (∅) = 0, (ii)

` (𝑋) = 1, and ` (⊎𝐴𝑖) =
∑

𝑖 ` (𝐴𝑖).

Definition C.5. A Markov kernel between measurable spaces (𝑋, Σ𝑋) and (𝑌, Σ𝑌) is a function
𝑓 : 𝑋 × Σ𝑌 → [0, 1] such that:

• For every 𝑥 ∈ 𝑋 , 𝑓 (𝑥,−) is a probability distribution.

• For every 𝐵 ∈ Σ𝑌 , 𝑓 (−, 𝐵) is a measurable function.

Markov kernels 𝑓 : 𝑋 × Σ𝑌 → [0, 1] and 𝑔 : 𝑌 × Σ𝑍 → [0, 1] can be composed with the following

formula

(𝑔 ◦ 𝑓) (𝑥,𝐶) =
∫

𝑔(−,𝐶)𝑑 𝑓 (𝑥,−)

The Dirac kernel 𝛿 (𝑎,𝐴) = 1 if 𝑎 ∈ 𝐴 and 0 otherwise is the unit for the composition defined

above that this structure can be organized into a category BorelStoch with standard Borel spaces

as objects and Markov kernels as morphisms.

Marginals and probabilistic independence. We will need some constructions on distributions and

measures over products.

Definition C.6. Given a distribution ` over 𝑋 × 𝑌 , its marginal `𝑋 is the distribution over 𝑋

defined by `𝑋 (𝐴) =
∫
𝑌
𝑑` (𝐴,−). Intuitively, this is the distribution obtained by sampling a pair

from ` and projecting to its first component. The other marginal `𝑌 is defined similarly.

Definition C.7. A probability measure ` over𝐴×𝐵 is probabilistically independent if it is a product
of its marginals `𝐴 and `𝐵 , i.e., ` (𝑋,𝑌) = `𝐴 (𝑋) · `𝐵 (𝑌), 𝑋 ∈ Σ𝐴 and 𝑌 ∈ Σ𝐵 .

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

	Abstract
	1 Introduction
	2 Background
	2.1 Monads and their algebras
	2.2 Probability Theory

	3 A Linear Language for Independence
	3.1 Independence Through Linearity
	3.2 Introducing the Language INI
	3.3 Denotational Semantics
	3.4 Soundness
	3.5 Shortcomings

	4 A Two-Level Language for Independence
	4.1 The Language INI2: Syntax, Typing Rules and Semantics
	4.2 Revisiting Sums
	4.3 Embedding from INI to INI2

	5 Categorical Semantics and Concrete Models
	5.1 Categorical Semantics of INI2
	5.2 Concrete models

	6 Soundness Theorem
	7 Related Work
	8 Conclusion and Future Directions
	References
	A Soundness Proof INI
	B Categorical Soundness Proof for INI2: Details
	B.1 Category of Models
	B.2 Glued category
	B.3 General Soundness Theorem
	B.4 Adding Base Types and Constants

	C Measurable sets and Markov Kernels

