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Separated and Shared Effects in Higher-Order Languages

ANONYMOUS AUTHOR(S)

Effectful programs interact in ways that go beyond simple input-output, making compositional reasoning

challenging. Existing work has shown that when such programs are “separate”, i.e., when programs do not

interfere with each other, it can be easier to reason about them. While reasoning about separated resources has

been well-studied, there has been little work on reasoning about separated effects, especially for functional,

higher-order programming languages.

We propose two higher-order languages that can reason about sharing and separation for commutative

effects. Our first language 𝜆INI has a bunched type system and probabilistic semantics, where the two product

types capture independent and possibly-dependent distributions. Our second language 𝜆2
INI

is a two-level,

stratified language, inspired by Benton’s linear-non-linear (LNL) calculus. We motivate this language with

a probabilistic model, but we also provide a general categorical semantics and exhibit a range of concrete

models beyond probabilistic programming. We prove soundness theorems for all of our languages; our general

soundness theorem for our categorical models of 𝜆2
INI

uses a categorical gluing construction.

CCS Concepts: • Software and its engineering → General programming languages; • Social and

professional topics→ History of programming languages.

Additional Key Words and Phrases: Probabilistic Programming, Denotational Semantics, Effects, Higher-Order

Languages
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1 INTRODUCTION
A central challenge in the theory of programming languages is to come up with sound and

expressive reasoning principles for effectful programs. In contrast with pure programs, where

different programs can only affect each other at clearly defined interfaces (e.g., the input or output

from a functional call), the interaction between effectful programs can be subtle and difficult to

reason about. To simplify formal analysis, it is highly useful to know when different effectful

computations are separate, i.e., they do not interfere with each other. For instance, in the presence

of effects such as memory allocation or probability, it is useful to know when pointers do not refer

to the same location, or when random quantities must be independent.

Prior Work: Reasoning About Resource Separation. While separated effects have received relatively

little attention in the literature, there is a long line of work on reasoning about separation of

resources [O’Hearn et al. 2001; Pym et al. 2004]. The concept of resource is ubiquitous in Computer

Science and usually manifests itself when effectful programs interact with the external world.

For example, when programming with memory allocation, the heap is a kind of resource; when

programming with probabilistic sampling, randomness can be seen as a resource.

In some cases, it is useful to ensure that computations access resources separately. When pro-

gramming with pointers, different pointers that alias refer to the same address, making it difficult to

reason about updates to the heap; requiring that programs do not alias can make formal verification

more modular and compositional. In the example of probabilistic effects, separation of resources

corresponds to probabilistic independence, while general joint distributions can share resources.

Just like for other notions of separation, independence can simplify reasoning about programs. For

instance, if two parts of a program produce independent distributions, their joint distribution will
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1:2 Anon.

only depend on their individual probabilities—there are no unexpected probabilistic interaction

between the two parts. Independence can also be an interesting property to verify; for instance, in

cryptographic protocols, basic security properties can be stated in terms of independence [Barthe

et al. 2019]. Prior work has developed program logics that can about independence in the context

of a first-order, imperative language [Barthe et al. 2019]. Unfortunately, it is unclear how to capture

independence in higher-order languages.

Our Work. We aim to develop a higher-order language that can reason about shared and separated

commutative effects in a variety of contexts. The closest work in this area is the bunched calcu-

lus [O’Hearn 2003], the Curry-Howard correspondent of the logic of Bunched Implications [O’Hearn

and Pym 1999]. While O’Hearn [2003] gives a presheaf model for the language and develops a con-

crete model for reasoning about memory-manipulating programs, other concrete models are harder

to come by. Indeed, there are no known models for the bunched calculus that can accommodate

probability, or monadic effects.

Throughout this work we will use probabilistic effects as our guiding example. We start by using

a resource interpretation of probabilistic samples to establish independence: if two computations

use disjoint resources (i.e., probabilistic samples), then they produce independent random quantities.

Our perspective yields two substructural, higher-order languages that can reason about probabilistic

independence. Both languages have a product type constructor ⊗ that enforces independence, in

the sense that closed programs of type N ⊗ N should be denoted by independent distributions.

Our first language 𝜆INI is a variation of the bunched calculus of O’Hearn [2003], i.e. it has two

distinct product and arrow types: the ⊗ type constructor enforces that the components of the pair

do not share any resources, while the × type constructor allows the components to share resources.

Intuitively, ⊗ captures pairs of independent values, while × captures pairs of general, possibly-

dependent values. We give a denotational semantics to 𝜆INI and prove its soundness theorem: the

product ⊗ ensures probabilistic independence.

While conceptually clean, 𝜆INI has limited expressivity. For instance, extending it with sum

types breaks the soundness property, and the soundness theorem for the probabilistic model is

intricate and difficult to generalize to other effects. In order to mitigate these issues, we define a

richer, two-level language 𝜆2
INI

, where the two product types of 𝜆INI are restricted to different layers.

Intuitively, one layer allows computations that share randomness, while the other layer prevents

computations from sharing randomness. To enable the layers to interact, the independent language

has a modality that allows to soundly import programs written in the shared language. This design

is inspired by recent work by Azevedo de Amorim [2023], who proposed a two-level language

to combine the sampling and linear operator semantics of probabilistic programming languages.

We show that 𝜆2
INI

supports two different kinds of sum types: a “shared” sum in the sharing layer,

and a “separated” sum in the independent layer. We give a denotational semantics for 𝜆2
INI
, prove

soundness, and give translations of two fragments of 𝜆INI into 𝜆
2

INI
.

Categorical Semantics and Concrete Models. In order to show the generality of 𝜆2
INI

and how it

connects to other classes of effects, we propose a categorical semantics for 𝜆2
INI

and prove a general

soundness theorem of our type system. Then, we present concrete models of our language inspired

by a variety of existing effectful programming languages.

• Linear logic. Models of linear logic have been used to give semantics to probabilistic

languages [Azevedo de Amorim and Kozen 2022; Danos and Ehrhard 2011; Ehrhard et al.

2017]. We show that pairing these models with categories of Markov kernels yields models

for 𝜆2
INI

. Our soundness theorem guarantees probabilistic independence; as far as we know,

our method is the first to ensure independence in these models.
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1:3

• Distributed programming. Next, we develop a relational model of 𝜆2
INI

for distributed

programming. In this model, programs describe the implementation and communication

patterns of multiple agents. Our soundness theorem shows that global programs of type

𝜏1 ⊗ 𝜏2 can be compiled into two local programs that execute independently. This property

is reminiscent of projection properties in choreographic languages [Montesi 2014].

• Name generation. Programming languages with name generation include a primitive

that generates a fresh identifier. In some contexts, it is important to control when and how

many times a name is generated; for instance, reusing a nonce value (“number once”) in

cryptographic applications may make a protocol vulnerable to replay attacks. We define a

model of 𝜆2
INI

based on name generation. Our soundness theorem states that the connective

⊗ enforces disjointness of the names used in each component.

• Commutative effects. We generalize the name generation and finite distribution models

by noting that they are both example of monadic semantics of commutative effects. Under

mild assumptions, every commutative monad gives rise to a model of 𝜆2
INI
.

• Bunched and separation logics. A long line of work uses bunched logics to reason

about separation of resources [O’Hearn and Pym 1999; O’Hearn et al. 2001]. We show

that all models of affine bunched logics are also models of 𝜆2
INI
, but not vice-versa. To

illustrate, we revisit O’Hearn’s SCI+, a bunched type system for programming with memory

allocation [O’Hearn 2003]. We define a model of 𝜆2
INI

based on SCI+, and give a sound

translation of 𝜆2
INI

into SCI+.

The diversity of models suggests that 𝜆2
INI

is a suitable framework to reason about separation and

sharing in higher-order programs with commutative effects.

Outline. After reviewing mathematical preliminaries (§2), we present our main contributions:

• First, we define a bunched, higher-order probabilistic 𝜆-calculus called 𝜆INI, with types that

can capture probabilistic independence and dependence. We give a denotational semantics

to our language and prove that ⊗ captures probabilistic independence (§3).

• Next, we define a two-level, higher-order probabilistic 𝜆-calculus called 𝜆2
INI

. This language

combines an independent fragment and a sharing fragment with two distinct sum types: an

independent sum, and a sharing sum. We give a probabilistic semantics and prove that ⊗
captures probabilistic independence; we also embed two fragments of 𝜆INI into 𝜆

2

INI
(§4).

• Generalizing, we propose a categorical semantics for 𝜆2
INI

. Our semantics is a weaker version

of Benton’s linear/non-linear (LNL) model for linear logic [Benton 1994] and of the calculus

proposed by Azevedo de Amorim [2023] (§5.1).

• We present a range of models for 𝜆2
INI

, described above. The soundness property of our type

system ensures natural notions of independence in each of these models (§5.2).

• Finally, we prove a general soundness theorem: every program of type 𝜏1⊗𝜏2 can be factored
as two programs 𝑡1 and 𝑡2 of types 𝜏1 and 𝜏2, respectively. Our proof relies on a categorical

gluing argument (§6).

We survey related work in (§7), and conclude in (§8).

2 BACKGROUND
2.1 Monads and their algebras

We will assume knowledge of basic concepts from category theory, including functors, products,

coproducts, Cartesian closed categories, and symmetric monoidal closed categories (SMCC). The

interested reader can consult Leinster [2014]; Mac Lane [2013] for good introductions to the subject.
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1:4 Anon.

Monads. Following seminal work by Moggi [1991], effectful computations can be given a seman-

tics via monads. A monad over a category C is a triple (𝑇, 𝜇, 𝜂) such that 𝑇 : C→ C is a functor,

𝜇𝐴 : 𝑇 2𝐴 → 𝑇𝐴 and 𝜂𝐴 : 𝐴 → 𝑇𝐴 are natural transformations such that 𝜇𝐴 ◦ 𝜇𝑇𝐴 = 𝜇𝐴 ◦ 𝑇 𝜇𝐴,
𝑖𝑑𝐴 = 𝜇𝐴 ◦𝑇𝜂𝐴 and 𝑖𝑑𝐴 = 𝜇𝐴 ◦ 𝜂𝑇𝐴.

Another useful, and equivalent, definition of monads requires a natural transformation 𝜂𝐴 and a

lifting operation (−)∗ : C(𝐴,𝑇𝐵) → C(𝑇𝐴,𝑇𝐵) such that objects from C and morphisms 𝐴→ 𝑇𝐵

form a category, usually referred to as the Kleisli category C𝑇 . This category has the same objects as

C, and has 𝐻𝑜𝑚CT (𝐴, 𝐵) = 𝐻𝑜𝑚C (𝐴,𝑇𝐵). Kleisli categories are frequently used to give semantics

to effectful programming languages.

Monad algebras. Given a monad 𝑇 , a 𝑇 -algebra is a pair (𝐴, 𝑓 : 𝑇𝐴→ 𝐴) such that 𝑖𝑑𝐴 = 𝑓 ◦ 𝜂𝐴
and 𝑓 ◦ 𝜇𝐴 = 𝑓 ◦𝑇 𝑓 . A 𝑇 -algebra morphism ℎ : (𝐴, 𝑓 ) → (𝐵,𝑔) is a C morphism ℎ : 𝐴 → 𝐵 such

that 𝑔 ◦𝑇ℎ = ℎ ◦ 𝑓 . 𝑇 -algebras and morphisms form a category C𝑇
, the Eilenberg-Moore category.

2.2 Probability Theory
We will use probabilistic programs and effects to illustrate our higher-order languages.

Definition 2.1. A distribution over a set 𝑋 is a function 𝜇 : 𝑋 → [0, 1] such that

∑
𝑥 ∈𝑋 𝜇 (𝑥) = 1.

Joint distributions are distributions over sets 𝑋 × 𝑌 . Given a joint distribution 𝜇 over 𝑋 × 𝑌 , its
marginal distribution over 𝑋 is defined as 𝜇𝑋 (𝑥) =

∑
𝑦∈𝑌 𝜇 (𝑥,𝑦) with and the second marginal 𝜇𝑌

being similarly defined. Furthermore, given a distribution 𝜇1 over 𝑋 and a distribution 𝜇2 over 𝑌 ,

we define 𝜇1 ⊗ 𝜇2 (𝑥,𝑦) = 𝜇1 (𝑥)𝜇2 (𝑦)

Definition 2.2. A distribution 𝜇 over 𝑋 × 𝑌 is probabilistically independent if it is a product of its
marginals 𝜇𝑋 and 𝜇𝑌 , i.e., 𝜇 (𝑥,𝑦) = 𝜇𝑋 (𝑥) · 𝜇𝑌 (𝑦), 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 .

A probability monad can be defined for Set. Given a set 𝑋 , let 𝐷𝑋 be the set of functions

𝜇 : 𝑋 → [0, 1] which are non-zero on finitely many values, and satisfy

∑
𝑥 ∈𝑠𝑢𝑝𝑝 (𝜇) 𝜇 (𝑥) = 1 [Fritz

2020]. The unit of the monad is given by 𝛿 (𝑎, 𝑏) = 1 iff 𝑎 = 𝑏 and 0 otherwise, while the bind is

defined as bind(𝑓 ) (𝜇) = ∑
𝑥 ∈𝑋 𝑓 (𝑥)𝜇 (𝑥).

3 A LINEAR LANGUAGE FOR INDEPENDENCE
To motivate our language for separated and shared effects, we will focus on one effect: proba-

bilistic sampling. We will build up two higher-order languages where types can ensure probabilistic

independence, the natural notion of separation for probabilistic effects.

3.1 Independence Through Linearity
In many probabilistic programs, independent quantities are initially generated through sampling

instructions. Then, a simple way to reason about independence of a pair of random expressions is

to analyze which sources of randomness each component uses: if the two expressions use distinct

sources of randomness, then they are independent; otherwise, they are possibly-dependent.

For instance, consider a simply typed first-order call-by-value language with a primitive ⊢ coin : B
that flips a fair coin. The program

let 𝑥 = coin in let 𝑦 = coin in (𝑥,𝑦)

flips two fair coins and pairs the results. This program will produce a probabilistically independent

distribution, since 𝑥 and 𝑦 are distinct sources of randomness. On the other hand, the program

let 𝑥 = coin in (𝑥, 𝑥)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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1:5

Variables 𝑥,𝑦, 𝑧

Context Shift Variables 𝑟, 𝑠

Types 𝜏 ::= B | 𝜏 × 𝜏 | 𝜏 ⊗ 𝜏 | 𝜏 ⊸ 𝜏 | 𝜏 → 𝜏

Expressions 𝑡,𝑢 ::= 𝑥 | 𝑏 ∈ B | coin | (𝑡,𝑢) | 𝜋𝑖 𝑡 | 𝑡 ⊗ 𝑢 | let 𝑥 ⊗ 𝑦 = 𝑡 in 𝑢
| 𝜆𝑥 . 𝑡 | 𝑡 𝑢 | 𝜆𝑠𝑥 . 𝑡 | 𝑡 @ 𝑢 | 𝑟 [𝑡] | 𝜌𝑟 .𝑡

Intuitionistic Contexts Γ ::= ·𝐼 | 𝑥 : 𝜏 | Γ, Γ | 𝑟 [Δ]
Separated Context Δ ::= ·𝑆 | 𝑥 : 𝜏 | Δ;Δ | 𝑟 [Γ]

Fig. 1. Types and Terms: 𝜆INI

does not produce an independent distribution: the two components are always equal, and hence

perfectly correlated. These principles are a natural fit for substructural type systems, which control

when variables can be shared. To investigate this idea, we develop a language 𝜆INI with a bunched

type system that can reason about probabilistic independence.

3.2 Introducing the Language 𝜆INI
The language 𝜆INI can be seen as an effectful version of the 𝛼𝜆-calculus [O’Hearn 2003], a calculus

based on the proof theory of the logic of bunched implications. BI was developed for reasoning

about sharing and separation of resources like pointers to a heap memory [O’Hearn et al. 2001], or

permissions to enter some critical section in concurrent code [O’Hearn 2007]. A distinct feature of

the 𝛼𝜆-calculus is that contexts are trees (so-called bunches) rather than lists [O’Hearn 2003].

Syntax. Figure 1 presents the syntax of types and terms. Along with base types (B), there are two
product types: we view × as the shared, or possibly-dependent product, while ⊗ is the independent

product. The language is higher-order, with a linear arrow type ⊸ and an intuitionistic one→.

The corresponding term syntax is fairly standard. We have variables, numeric constants, and

primitive distributions (coin). The two kinds of products can be created from two kinds of pairs, and

eliminated using projection and let-binding, respectively. Finally, we have the usual 𝜆-abstractions

and applications, their main difference being that⊸ cannot share the context while→ can. Our

examples will use the standard syntactic sugar let 𝑥 = 𝑡 in 𝑢 ≜ (𝜆𝑥 .𝑢) 𝑡 , where we use the

linear expressions. The most unusual aspect of this calculus is the mutually recursive grammar

for contexts, which was first developed by [Krishnaswami 2011] with the goal of making the

structural rules in 𝛼𝜆-calculus admissible. In order to recover the full expressivity of the 𝛼𝜆-calculus

you need the context modalities 𝑟 [Γ] and 𝑟 [Δ], where 𝑟 ranges over a set of symbols, and the

introduction/elimination programs 𝑟 [𝑡] and 𝜌𝑟 . 𝑡 , respectively.

Type system. Figure 2 shows the typing rules for 𝜆INI; the rules are standard from bunched logic.

There are two variable rules and both are affine: in separated contexts Δ variables may be dropped

but not freely duplicated, while in shared contexts Γ variables may be dropped and duplicated. For

the sharing product ×, the introduction rule × Intro shares the context across the premises: both

components can use the same variables. Either component can be projected out of these pairs (×
Elim𝑖 ). For the independent product ⊗, in contrast, the introduction rule ⊗ Intro requires both

premises to use disjoint contexts. Thus, the components cannot share variables. Tensor pairs are

eliminated by a let-pair construct that consumes both components (⊗ Elim). In substructural type

systems, × is called an additive product, while ⊗ is called a multiplicative product. The abstraction
and application rules follow the same pattern as the products, where one is multiplicative (⊸) and

the other is additive (→). Another key difference between them is that they extend each context

differently. The multiplicative abstraction extends the (separated) context using the separated

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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1:6 Anon.

Const

· ⊢ 𝑏 : B

Coin

· ⊢ coin : B

Var𝐼

Γ, 𝑥 : 𝜏 ⊢ 𝑥 : 𝜏

Var𝑆

Δ;𝑥 : 𝜏 ⊢ 𝑥 : 𝜏

× Intro

Γ ⊢ 𝑡1 : 𝜏 Γ ⊢ 𝑡2 : 𝜏2
Γ ⊢ (𝑡1, 𝑡2) : 𝜏1 × 𝜏2

× Elim𝑖

Γ ⊢ 𝑡 : 𝜏1 × 𝜏2
Γ ⊢ 𝜋𝑖 𝑡 : 𝜏𝑖

⊗ Intro

Δ1 ⊢ 𝑡1 : 𝜏 Δ2 ⊢ 𝑡2 : 𝜏2
Δ1;Δ2 ⊢ 𝑡1 ⊗ 𝑡2 : 𝜏1 ⊗ 𝜏2

⊗ Elim

Δ1 ⊢ 𝑡 : 𝜏1 ⊗ 𝜏2 Δ2, 𝑥 : 𝜏1, 𝑦 : 𝜏2 ⊢ 𝑢 : 𝜏

Δ1;Δ2 ⊢ let 𝑥 ⊗ 𝑦 = 𝑡 in 𝑢 : 𝜏

Abstraction

Δ;𝑥 : 𝜏1 ⊢ 𝑡 : 𝜏2
Δ ⊢ 𝜆𝑥 . 𝑡 : 𝜏1 ⊸ 𝜏2

Application

Δ1 ⊢ 𝑡 : 𝜏1 ⊸ 𝜏2 Δ2 ⊢ 𝑢 : 𝜏1

Δ1;Δ2 ⊢ 𝑡 𝑢 : 𝜏2

Shared Abstraction

Γ, 𝑥 : 𝜏1 ⊢ 𝑡 : 𝜏2
Γ ⊢ 𝜆𝑠𝑥 . 𝑡 : 𝜏1 → 𝜏2

Shared Application

Γ ⊢ 𝑡 : 𝜏1 → 𝜏2 Γ ⊢ 𝑢 : 𝜏1

Γ ⊢ 𝑡 @ 𝑢 : 𝜏2

Shr. Region Elim

𝑟 [Γ] ⊢ 𝑡 : 𝜏
Γ ⊢ 𝜌𝑟 .𝑡 : 𝜏

Sep. Region Elim

𝑟 [Δ] ⊢ 𝑡 : 𝜏
Δ ⊢ 𝜌𝑟 .𝑡 : 𝜏

Shr. Region Intro

Γ ⊢ 𝑡 : 𝜏
𝑟 [Γ] ⊢ 𝑟 [𝑡] : 𝜏

Sep. Region Intro

Δ ⊢ 𝑡 : 𝜏
Γ, 𝑟 [Δ] ⊢ 𝑟 [𝑡] : 𝜏

Fig. 2. Typing Rules: 𝜆INI

extension (;) while the additive abstraction extends the (shared) context with the shared extension

(,). Note that there are two distinct empty contexts, ·𝐼 is the empty intuitionistic context while ·𝑆 is

the empty separated context.

The most unusual rules are the context labeling ones. Their purpose is to guarantee that shared

contexts can only be split when producing shared types, and similar to separated contexts. For

example, note that the ⊗ introduction rule can only be applied when the context is separated,

meaning that it cannot, for instance, be used to split the shared context 𝑥 : 𝐴,𝑦 : 𝐵. These rules

come in pairs and they provide a way of creating a new modal context with the introduction rules

(Sep/Shr Region Intro) and opening a modal context with the elimination rule (Sep/Shr Region

Elim).

3.3 Denotational Semantics
We can give a semantics to this language using the category Set and the finite probability monad

𝐷 . From left to right and top to bottom, Figure 3 defines the semantics of types, contexts, and typing

derivations producing well-typed terms.

For types, we interpret both product types as products of sets. Arrow types are interpreted as

the set of Kleisli arrows, i.e., maps J𝜏1K→ 𝐷 J𝜏2K. Contexts are interpreted as products of sets.

Well-typed terms are interpreted as Kleisli arrows. We briefly walk through the term semantics,

which is essentially the same as the Kleisli semantics proposed by Moggi [1991]. Variables are
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JBK = B

J𝜏 × 𝜏K = J𝜏K × J𝜏K
J𝜏 ⊗ 𝜏K = J𝜏K × J𝜏K

J𝜏1 ⊸ 𝜏2K = J𝜏1K→ 𝐷 J𝜏2K
J𝜏1 → 𝜏2K = J𝜏1K→ 𝐷 J𝜏2K

J·𝐼 K𝐼 = J·𝑆K𝑆 = 1

J𝑥 : 𝜏K𝐼 = J𝑥 : 𝜏K𝑆 = J𝜏K
JΓ1, Γ2K𝐼 = JΓ1K𝐼 × JΓ2K𝐼
J𝑟 [Δ]K𝐼 = JΔK𝑆

JΔ1;Δ2K𝑆 = JΔ1K𝑆 × JΔ2K𝑆
J𝑟 [Γ]K𝑆 = JΓK𝐼

JΓ ⊢ 𝑡 : 𝜏K : JΓK𝐼 → 𝐷 J𝜏K
JΔ ⊢ 𝑡 : 𝜏K : JΔK𝑆 → 𝐷 J𝜏K

J𝑥K (𝛾, 𝑣𝑥 ) = return 𝑣𝑥

J𝑏K (∗) = return 𝑏

JcoinK (∗) = 1

2

(𝛿tt + 𝛿ff)

J(𝑡1, 𝑡2)K (𝛾) = 𝑥 ← J𝑡1K (𝛾);𝑦 ← J𝑡2K (𝛾); return (𝑥,𝑦)
J𝜋𝑖 𝑡K (𝛾) = (𝑥,𝑦) ← J𝑡K (𝛾); return 𝑥

J𝑡1 ⊗ 𝑡2K (𝛾1, 𝛾2) = 𝑥 ← J𝑡1K (𝛾1);𝑦 ← J𝑡2K (𝛾2); return (𝑥,𝑦)
Jlet 𝑥 ⊗ 𝑦 = 𝑡 in 𝑢K (𝛾1, 𝛾2) = (𝑥,𝑦) ← J𝑡K (𝛾1); J𝑢K (𝛾2, 𝑥,𝑦)

J𝜆𝑥 . 𝑡K (𝛾) = return (𝜆𝑥 . J𝑡K (𝛾))
J𝑡 𝑢K (𝛾1, 𝛾2) = 𝑓 ← J𝑡K (𝛾1);𝑥 ← J𝑢K (𝛾2); 𝑓 (𝑥)
J𝜆𝑠𝑥 . 𝑡K (𝛾) = return (𝜆𝑥 . J𝑡K (𝛾))
J𝑡 @ 𝑢K (𝛾) = 𝑓 ← J𝑡K (𝛾);𝑥 ← J𝑢K (𝛾); 𝑓 (𝑥)

J𝑟 [𝑡]K (𝛾) = J𝑡K
J𝜌𝑟 . [𝑡]K (𝛾) = J𝑡K

Fig. 3. Denotational Semantics: 𝜆INI

interpreted using the unit of the monad, which maps a value 𝑣 to the point mass distribution 𝛿𝑣 .

Coins are interpreted as the fair convex combination of two point mass distributions over tt and ff.
The rest of the constructs involve sampling, which is semantically modeled by composition of

Kleisli morphisms. We use monadic arrow notation to denote Kleisli composition, i.e., 𝑥 ← 𝑓 ;𝑔 ≜
𝑔∗ ◦ 𝑓 . The two pair constructors have the same semantics: we sample from each component, and

then pair the results. The projections for × computes the marginal of a joint distribution, while let-

binding for ⊗ samples from the pair 𝑡 and then uses the sample in the body 𝑢. Lambda abstractions

are interpreted as point mass distributions, while applications are interpreted as sampling the

function, sampling the argument, and then applying the first sample to the second one.

The modal context rules are, semantically, not interesting. Their purpose is to guarantee that

shared and separated contexts are used and appended appropriately, which plays no role at the

semantic level.

Example 3.1 (Correlated pairs). It may seem as if there is no way of creating non-independent

pairs, since the semantics for both kinds of pairs samples each component independently. However,

consider the program let 𝑥 = coin in (𝑥, 𝑥). By unfolding the definitions, its semantics is

𝑥 ← 1

2

(𝛿0 + 𝛿1);𝑦 ← 𝛿𝑥 ; 𝑧 ← 𝛿𝑥 ;𝛿 (𝑦,𝑧) = 𝑥 ← 1

2

(𝛿0 + 𝛿1);𝛿 (𝑥,𝑥) =
1

2

(𝛿 (0,0) + 𝛿 (1,1) ).

The resulting samples are perfectly correlated, not independent.

Example 3.2 (Independent pairs are correlated pairs). We now illustrate show to use the modal

syntax by writing a program showing that independent distributions are also possibly-dependent

distributions in 𝜆INI: · ⊢ 𝜆𝑧. let 𝑥 ⊗ 𝑦 = 𝑧 in 𝜌𝑟 . (𝑟 [𝑥], 𝑟 [𝑦]) : 𝜏1 ⊗ 𝜏2 ⊸ 𝜏1 × 𝜏2.
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3.4 Soundness
The type system of 𝜆INI guarantees that ⊗ enforces probabilistic independence. Concretely, if

· ⊢ 𝑡 : 𝜏1 ⊗ 𝜏2 is well-typed, then J𝑡K (∗) is an independent probability distribution over J𝜏1K × J𝜏2K.
We show this soundness theorem by constructing a logical relation R𝜏 ⊆ 𝐷 (J𝜏K), defined as:

RB = 𝐷 (B)
R𝜏1⊗𝜏2 = {𝜇1 ⊗ 𝜇2 ∈ 𝐷 (J𝜏1K × J𝜏2K) | 𝜇𝑖 ∈ R𝜏𝑖 }
R𝜏1×𝜏2 = {𝜇 ∈ 𝐷 (J𝜏1K × J𝜏2K) | 𝜋𝑖 (𝜇) ∈ R𝜏𝑖 for 𝑖 ∈ {1, 2}}
R𝜏1⊸𝜏2 = {𝜇 ∈ 𝐷 (J𝜏1K→ 𝐷 (J𝜏2K)) | ∀𝜇 ′ ∈ R𝜏1 , 𝑥 ← 𝜇 ′; 𝑓 ← 𝜇; 𝑓 (𝑥) ∈ 𝑅𝜏2 }
R𝜏1→𝜏2 = {𝜇 ∈ 𝐷 (J𝜏1K→ 𝐷 (J𝜏2K)) | ∀𝜇 ′ ∈ 𝐷 (𝜏1 × (𝜏1 → 𝐷 (𝜏2)))

𝜇 ′
1
∈ R𝜏1 ∧ 𝜇 ′

2
= 𝜇 ⇒ (𝑥, ℎ) ← 𝜇 ′;ℎ(𝑥) ∈ 𝑅𝜏2 }.

Logical relations for contexts Γ and Δ can be defined as:

R · = 1

R𝑥 :𝜏 = R𝜏
RΓ1,Γ2 = {𝜇 ∈ 𝐷 (JΓ1K × JΓ2K) | 𝜋𝑖 (𝜇) ∈ RΓ𝑖 }
R𝑟 [Δ] = RΔ

R · = 1

R𝑥 :𝜏 = R𝜏
RΔ1;Δ2

= {𝜇1 ⊗ 𝜇2 ∈ 𝐷 (JΔ1K × JΔ2K) | 𝜇𝑖 ∈ RΔ𝑖
}

R𝑟 [Γ ] = RΓ

Theorem 3.3. If Γ ⊢ 𝑡 : 𝜏 and 𝜇 ∈ RΓ then (𝑥 ← 𝜇; J𝑡K (𝑥)) ∈ R𝜏 .

Proof. The proof follows by induction on the derivation of Γ ⊢ 𝑡 : 𝜏 . Most cases follow by

simply using the induction hypothesis. The exception is the Shared Abstraction case. While the

logical relations for the shared arrow uses joint distributions over the input space and the function

space, the induction hypothesis is only valid for joint distributions over the extended context.

We solve this by using disintegration, which is a construction that given 𝜇 ∈ 𝐷 (𝐴 × 𝐵) and
𝜈 ∈ 𝐷 (𝐵), outputs a function 𝑓 : 𝐵 → 𝐷 (𝐴) such that 𝜇 = 𝑏 ← 𝜈 ;𝑎 ← 𝑓 (𝑏); return (𝑎, 𝑏). The full
proof can be found in Appendix A.

□

Corollary 3.4. If · ⊢ 𝑡 : 𝜏1 ⊗ 𝜏2 then J𝑡K (∗) is an independent probability distribution over J𝜏1K× J𝜏2K.

Note that even though the soundness property expressed by the corollary above only concerns

closed programs of type 𝜏1 ⊗ 𝜏2, the full soundness theorem is much more general than that. Indeed,

the soundness theorem implies properties about the semantics of every program Γ ⊢ 𝑡 : 𝜏 . For

instance, if Γ ⊢ 𝑡 : B, then J𝑡K can be any Kleisli arrow. If, however, Γ ⊢ 𝑡 : B⊗B, then J𝑡K is a Kleisli
arrow that maps any joint distribution over Γ in RΓ to an independent distribution over B × B.

Constants. An indirect consequence of this theorem is that it provides a blueprint of when it is

sound to add a constant or base type to the language. Given a base type 𝜎 that has an interpretation

in the Kleisli semantics, you can define R𝜎 = 𝐷 (J𝜎K). Furthermore, If you want to soundly add

an operation Γ ⊢ op : 𝜏 you must pick a semantics JopK such that for every distribution 𝜇 ∈ RΓ ,

𝛾 ← 𝜇; JopK (𝛾) ∈ R𝜏 . In particular, it is sound to add any operation to the shared fragment of

the language, i.e. the intuitionistic sublanguage of 𝜆INI, while one must be careful when adding

operations to the substructural fragment of 𝜆INI, as to not break the logical relation invariant.

3.5 Shortcomings
We finish this section by noting that even though 𝜆INI is the first higher-order calculus that can

reason about independence properties of programs, it still has a couple of shortcomings. While
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the intuitionistic fragment can be easily made complete with respect to the Kleisli semantics,

if-statements and sum types are still problematic. Consider the simple program:

if coin then tt ⊗ tt else ff ⊗ ff

Operationally, this probabilistic program flips a fair coin and outputs a pair with two copies of the

result, tt⊗tt or ff ⊗ff. Since tt and ff are constants they do not share any variables, so both branches

can be given type B ⊗ B and a standard case analysis rule would assign the whole program B ⊗ B.
However, this extension would break soundness (theorem 3.3): the pair is not probabilistically

independent because its components are always equal to each other.

The second problem with 𝜆INI is that the proof of Theorem 3.3 does not seem to scale beyond

probabilistic effects, since the shared abstraction inductive case relies on disintegration. Furthermore,

it is unclear how to scale this proof to accommodate even continuous probability distributions, where

the existence of disintegration is much less straight-forward than in the discrete case [Dahlqvist

et al. 2018].

4 A TWO-LEVEL LANGUAGE FOR INDEPENDENCE
The substructural type system of 𝜆INI can distinguish between independent and possibly depen-

dent random quantities, but the language is not as expressive as we would like, as explained in

the previous section. In this section we introduce a stratified, two-level language 𝜆2
INI

that resolves

these problems. Finally, we show how to embed two fragments of 𝜆INI into 𝜆
2

INI
.

4.1 The Language 𝜆2INI: Syntax, Typing Rules and Semantics
The stratified design of 𝜆2

INI
is guided by a simple observation about products, sums, and dis-

tributions, which might be of more general interest. In 𝜆INI, the product types correspond to two

distinct ways of composing distributions with products: the sharing product 𝜏1 × 𝜏2 corresponds to
distributions of products,𝑀 (𝜏1 × 𝜏2), while the separating product 𝜏1 ⊗ 𝜏2 corresponds to products of
distributions,𝑀𝜏1 ×𝑀𝜏2.

Similarly, there are twoways of combining distributions and sums: distributions of sums,𝑀 (𝜏1+𝜏2),
and sums of distributions,𝑀𝜏1 +𝑀𝜏2. We think of the first combination as a sharing sum, since the

distribution can place mass on both components of the sum. In contrast, the second combination is

a separating sum, since the distribution either places all mass on 𝜏1 or all mass on 𝜏2.

Finally, there are interesting interactions between sharing and separating, sums and products.

For instance, the problematic sum example we saw above performs case analysis on coin—a sharing
sum, because it has some probability of returning true and some probability of returning false—but

produces a separating product B ⊗ B. If we instead perform case analysis on a separating sum, then

the program either always takes the first branch or always takes the second branch, and now there

is no problem with producing a separating product.

These observations lead us to design a two-level language, where one layer includes the sharing

connectives and the other layer includes the separating connectives. We call this language 𝜆2
INI
,

where INI stands for independent/non-independent.

Syntax. The program and type syntax of 𝜆2
INI
, summarized in Figure 4, is stratified into two

layers: a non-independent (NI) layer, and an independent (I) layer. We will color-code them: the

NI-language will be orange, while the I-language will be purple.

The NI layer has base, product (×), and sum types (+). The language is mostly standard: we have

variables along with the usual pairing and projection constructs for products, and injection and

case analysis constructs for sums. The NI layer does not have arrows, but it does allow let-binding.
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The I-layer is quite similar to 𝜆INI: it has its own product (⊗) and sum (⊕) types, and a linear

arrow type (⊸). The typeM(𝜏) brings a type from the NI-layer into the I-layer. The language

is also fairly standard, with constructs for introducing and eliminating products and sums, and

functions and applications. The last construct (sample 𝑡 as 𝑥 in𝑀) is from [Azevedo de Amorim

2023]: it allows the two layers to interact. Here, 𝑡 and 𝑥 are two (possibly empty) lists of the same

length.

Intuitively, the NI-language allows sharing while the I-language disallows sharing. Each language

has its own sum type, a sharing and separated sum, respectively, each of which interacts nicely

with its own product type. TheM modality can be thought of as an abstraction barrier between

both languages that enables the manipulation of shared programs in a separating program while

not allowing its sharing to be inspected, except when producing another boxed term.

Variables 𝑥,𝑦, 𝑧

NI-types 𝜏 ::= B | 𝜏 × 𝜏 | 𝜏 + 𝜏
I-types 𝜏 ::= 𝜏 ⊗ 𝜏 | 𝜏 ⊕ 𝜏 | 𝜏 ⊸ 𝜏 | M(𝜏)
NI-expressions 𝑀, 𝑁 ::= 𝑥 | 𝑏 ∈ B | (𝑀, 𝑁 ) | 𝜋𝑖 𝑀 | ini t

| case 𝑡 of ( |in1𝑥 ⇒ 𝑢1 | in2𝑥 ⇒ 𝑢2) | let 𝑥 = 𝑀 in 𝑁

I-expressions 𝑡,𝑢 ::= 𝑥 | 𝑡 ⊗ 𝑢 | let 𝑥 ⊗ 𝑦 = 𝑡 in 𝑢 | ini t
| case 𝑡 of ( |in1𝑥 ⇒ 𝑢1 | in2𝑥 ⇒ 𝑢2) | 𝜆𝑥. 𝑡 | 𝑡 𝑢 | sample 𝑡 as 𝑥 in𝑀

NI-contexts Γ ::= 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛
I-contexts Γ ::= 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛

Fig. 4. Types and Terms: 𝜆2INI

Typing rules. The typing rules of 𝜆2
INI

are presented in Figure 5. We have two typing judgments

for the two layers; we use subscripts on the turnstiles to indicate the layer. We start with the first

group of typing rules, for the sharing (NI) layer. These typing rules are entirely standard for a

first-order language with products and sums. Note that all rules allow the context to be shared

between different premises, differently from 𝜆INI, which has both multiplicative and additive rules.

The second group of typing rules assigns types to the independent (I) layer. These rules are the

standard rules for multiplicative linear logic , and are almost identical to the linear fragment of

𝜆INI. Unlike before, however, the rules treat variables linearly, and do not allow sharing variables

between different premises. The rules for the sum 𝜏1 ⊕ 𝜏2 are new. Again, the elimination (Case)

rule does not allow sharing variables between the guard and the body.

The final rule, Sample, is the interaction rule between the two languages. The first premise

is from the sharing (NI) language, where the program 𝑀 can have free variables 𝑥1, . . . , 𝑥𝑛 . The

rest of the premises are from the independent (I) language, where linear programs 𝑡𝑖 have boxed

typeM𝜏𝑖 . The conclusion of the rule combines programs 𝑡𝑖 with 𝑀 , producing an I-program of

boxed type. Intuitively, this rule allows a program in the sharing language to be imported into the

linear language. Operationally, sample 𝑡 as 𝑥 in𝑀 constructs a distribution 𝑡 using the independent

language, samples from it and binds the sample to 𝑥 in the shared program𝑀 , and finally boxes

the result into the linear language.

Probabilistic Semantics. To keep the presentation concrete, in this section we will work with a

concrete semantics motivated by probabilistic independence, where programs are probabilistic

programs with discrete sampling and we add a fair coin primitive · ⊢𝑁𝐼 coin : B. In the next section,

we will present the general categorical semantics of 𝜆2
INI

and consider other models.
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The probabilistic semantics for 𝜆2
INI

is defined in Figure 6. For the NI-layer, we use the same

semantics of 𝜆INI, i.e., well-typed programs are interpreted as Kleisli arrows for the finite distribution

monad 𝐷 . The Kleisli category Set𝐷 has sets as objects, so we may simply define the semantics of

each type to be a set. It is also known that Set has products and coproducts, which can be used to

interpret well-typed programs in NI.

For the 𝐼 -language, we use the category of algebras for the finite distribution monad 𝐷 and

plain maps, S̃et𝐷 . Concretely, its objects are pairs (𝐴, 𝑓 ), where 𝑓 is a 𝐷-algebra, and a morphism

(𝐴, 𝑓 ) → (𝐵,𝑔) is a function 𝐴→ 𝐵. Given two objects (𝐴, 𝑓 ) and (𝐵,𝑔) we can define a product

algebra over the set 𝐴 × 𝐵. Furthermore, it is also possible to equip the set-theoretic disjoint

union 𝐴 + 𝐵 and exponential 𝐴 ⇒ 𝐵 with algebra structures, making it a model of higher-order

programming with case analysis [Simpson 1992]. We only need to explicitly define the algebraic

structure when interpreting the type constructorM, which is interpreted as the free 𝐷-algebra

with the multiplication for the monad as the algebraic structure. The Sample rule is interpreted

using the joint probability operation ⊗ and the monad multiplication.

Now that we have defined the probabilistic semantics of the 𝜆2
INI
, we can prove its soundness

theorem: just like in 𝜆INI, the type constructor ⊗ enforces probabilistic independence.

Theorem 4.1. If · ⊢𝐼 𝑡 :M𝜏1 ⊗M𝜏2 then J𝑡K is an independent distribution.

Proof. The semantics of · ⊢𝐼 𝑡 :M𝜏1 ⊗M𝜏2 is a set-theoretic function J𝑡K : 1→ 𝐷 J𝜏1K×𝐷 J𝜏2K,
which is isomorphic to an independent distribution. □

4.2 Revisiting Sums
Let us revisit the problematic if-then-else program. The type system of 𝜆2

INI
makes it impossible

to produce an independent pair by pattern matching on values:

dist :M(1 + 1) ⊬𝐼 if dist then (tt ⊗ tt) else (ff ⊗ ff) :MB ⊗MB

where if-statements are simply elimination of sum types over booleans. However, we can write a

well-typed version of this program if we use the sharing product:

dist :M(1 + 1) ⊢𝐼 sample dist as 𝑥 in (if 𝑥 then (tt,tt) else (ff,ff)) :M(B × B)

Constants. As it stands, 𝜆2
INI

is not very expressive. Most languages based on core calculi usually

guarantee a certain level of expressivity by adding base types and operations to the language. One

of the basic examples are arithmetic expressions, as it is done for PCF. As such, in order to increase

the expressivity of 𝜆2
INI

we should add constants to the language.

Much like the 𝜆INI case, since we are interested in proving the soundness theorem, we should

guarantee that the operations also validate it. For the semantics presented in Figure 6, adding

new constants is straightforward from a semantic point of view, since ⊗ is denoted exactly by

independent distributions, which means that any function between 𝐷-algebras can be soundly

added to 𝜆2
INI
. Furthermore, any 𝐷-algebra can be added as a new type of 𝜆2

INI
.

Example: One-Time-Pad. Weuse this concrete semantics of 𝜆2
INI

to extend it with a type constructor

MUnif (𝜏) which is denoted by uniform distributions over 𝜏 , where 𝜏 is denoted by a finite set.

We can demonstrate this uniform constant through a simple program from cryptography. At a

high level, the information-theoretic security of some cryptographic protocols can be formulated

in terms of the interaction of uniform distributions and independence. One basic example is the

one-time pad cryptographic scheme. This protocol receives as input a message, we can assume that

it is a single bit𝑚, samples a uniformly distributed bit 𝑘 (key) and outputs the encrypted message

𝑚 ⊕ 𝑘 , where ⊕ is the xor operation.
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1:12 Anon.

Const

𝑏 ∈ B

Γ ⊢𝑁𝐼 𝑏 : B

Var

Γ, 𝑥 : 𝜏 ⊢𝑁𝐼 𝑥 : 𝜏

Let

Γ ⊢𝑁𝐼 𝑡 : 𝜏1 Γ, 𝑥 : 𝜏1 ⊢𝑁𝐼 𝑢 : 𝜏

Γ ⊢𝑁𝐼 let 𝑥 = 𝑡 in 𝑢 : 𝜏

× Intro

Γ ⊢𝑁𝐼 𝑀 : 𝜏1 Γ ⊢𝑁𝐼 𝑁 : 𝜏2

Γ ⊢𝑁𝐼 (𝑀, 𝑁 ) : 𝜏1 × 𝜏2

× Elim𝑖

Γ ⊢𝑁𝐼 𝑀 : 𝜏1 × 𝜏2
Γ ⊢𝑁𝐼 𝜋𝑖𝑀 : 𝜏𝑖

⊕ Intro𝑖

Γ ⊢𝑁𝐼 𝑀 : 𝜏𝑖

Γ ⊢𝑁𝐼 in𝑖 𝑀 : 𝜏1 + 𝜏2

⊕ Elim

Γ ⊢𝑁𝐼 𝑀 : 𝜏1 + 𝜏2 Γ, 𝑥 : 𝜏1 ⊢𝑁𝐼 𝑁1 : 𝜏 Γ, 𝑥 : 𝜏2 ⊢𝑁𝐼 𝑁2 : 𝜏

Γ ⊢𝑁𝐼 case𝑀 of ( | in1 𝑥 ⇒ 𝑁1 | in2 𝑦 ⇒ 𝑁2) : 𝜏

Var

𝑥 : 𝜏 ⊢𝐼 𝑥 : 𝜏

Abstraction

Γ, 𝑥 : 𝜏1 ⊢𝐼 𝑡 : 𝜏2

Γ ⊢𝐼 𝜆𝑥. 𝑡 : 𝜏1 ⊸ 𝜏2

Application

Γ1 ⊢𝐼 𝑡 : 𝜏1 ⊸ 𝜏2 Γ2 ⊢𝐼 𝑢 : 𝜏1

Γ1, Γ2 ⊢𝐼 𝑡 𝑢 : 𝜏2

⊗ Intro

Γ1 ⊢𝐼 𝑡 : 𝜏1 Γ2 ⊢𝐼 𝑢 : 𝜏2

Γ1, Γ2 ⊢𝐼 𝑡 ⊗ 𝑢 : 𝜏1 ⊗ 𝜏2

⊗ Elim

Γ1 ⊢𝐼 𝑡 : 𝜏1 ⊗ 𝜏2 Γ2, 𝑥 : 𝜏1, 𝑦 : 𝜏2 ⊢𝐼 𝑢 : 𝜏

Γ1, Γ2 ⊢𝐼 let 𝑥 ⊗ 𝑦 = 𝑡 in 𝑢 : 𝜏

⊕ Intro𝑖

Γ ⊢𝐼 𝑡 : 𝜏𝑖

Γ ⊢𝐼 in𝑖 𝑡 : 𝜏1 ⊕ 𝜏2

⊕ Elim

Γ1 ⊢𝐼 𝑡 : 𝜏1 ⊕ 𝜏2 Γ2, 𝑥 : 𝜏1 ⊢𝐼 𝑢1 : 𝜏 Γ2, 𝑦 : 𝜏2 ⊢𝐼 𝑢2 : 𝜏

Γ1, Γ2 ⊢𝐼 case 𝑡 of ( | in1 𝑥 ⇒ 𝑢1 | in2 𝑦 ⇒ 𝑢2) : 𝜏

Sample

𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛 ⊢𝑁𝐼 𝑀 : 𝜏 Γ𝑖 ⊢𝐼 𝑡𝑖 :M(𝜏𝑖 ) 0 < 𝑖 ≤ 𝑛

Γ1, . . . , Γ𝑛 ⊢𝐼 sample 𝑡𝑖 as 𝑥𝑖 in𝑀 :M(𝜏)

Fig. 5. Typing Rules: 𝜆2INI

The security of this protocol rests on two ideas. First, the encryption scheme must output a uni-

formly distributed bit and it must be independent from its input. Without worrying about the secu-

rity of the protocol, we can easilywrite it in 𝜆2
INI

as 𝜇 :M(2) ⊢𝐼 sample 𝜇 as𝑥 in let 𝑦 = coin in 𝑥 ⊕ 𝑦 :

M(2 × 2).
Unfortunately, as it stands we cannot use 𝜆2

INI
’s type system to prove that the protocol is secure.

We rectify this by adding the operation · ⊢𝐼 xor_pair :M(2) ⊸M(2) ⊗MUnif (2) that corresponds
to sampling from the input, xor-ing it with a fair coin and outputting the ciphered bit and the original

bit. We can now write the protocol as the program 𝜇 :M(2) ⊢𝐼 : xor_pair 𝜇 :M(2) ⊗ MUnif (2),
which has the right type.

4.3 Embedding from 𝜆INI to 𝜆2INI

Now that we have seen both 𝜆INI and 𝜆
2

INI
, a natural question is how these languages are related.

We first show how to embed the fragment of 𝜆INI without arrow types into 𝜆2
INI
. The idea is that

the semantics of 𝜆INI is given by a Kleisli category, so there is a translation into the NI-layer of 𝜆2
INI

.
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LBM = B JM𝜏K = (𝐷 J𝜏K , 𝜇J𝜏K)
L𝜏 × 𝜏M = L𝜏M × L𝜏M J𝜏 ⊗ 𝜏K = J𝜏K × J𝜏K
L𝜏 + 𝜏M = L𝜏M + L𝜏M J𝜏 ⊕ 𝜏K = J𝜏K + J𝜏K

J𝜏 ⊸ 𝜏K = J𝜏K→ J𝜏K

L𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛M = L𝜏1M × · · · × L𝜏𝑛M
q
𝑥1 : 𝜏

1
, . . . , 𝑥𝑛 : 𝜏

𝑛

y
=

q
𝜏
1

y
× · · · ×

q
𝜏
𝑛

y

LΓ ⊢ 𝑀 : 𝜏M ∈ Set𝐷 (LΓM, L𝜏M) JΓ ⊢ 𝑡 : 𝜏K ∈ S̃et𝐷 (JΓK , J𝜏K)

J𝑥K (𝛾, 𝑣𝑥 ) = 𝑣𝑥

J𝑡 ⊗ 𝑢K (𝛾1, 𝛾2) = J𝑡K (𝛾1) × J𝑢K (𝛾2)
Jlet 𝑥 ⊗ 𝑦 = 𝑡 in 𝑢K (𝛾1, 𝛾2) = J𝑢K (𝛾2, J𝑡K (𝛾1))

J𝜆𝑥 . 𝑡K (𝛾) (𝑥) = J𝑡K (𝛾) (𝑥)
J𝑡 𝑢K (𝛾1, 𝛾2) = J𝑡K (𝛾1, J𝑢K (𝛾2)

Jin𝑖𝑡K (𝛾) = 𝑖𝑛𝑖 (J𝑡K (𝛾))

Jcase 𝑡 of ( |in1𝑥 ⇒ 𝑢1 | in2𝑥 ⇒ 𝑢2)K (𝛾1, 𝛾2) =
{
J𝑢1K (𝛾2, 𝑣), J𝑡K (𝛾1) = 𝑖𝑛1 (𝑣)
J𝑢2K (𝛾2, 𝑣), J𝑡K (𝛾1) = 𝑖𝑛2 (𝑣)

Jsample 𝑡𝑖 as 𝑥𝑖 in 𝑁 K = 𝜇 ◦ 𝐷L𝑁 M ◦ (J𝑡1K ⊗ · · · ⊗ J𝑡𝑛K)

Fig. 6. Concrete Semantics: 𝜆2INI

The types are translated as follows:

T (B) ≜ B T (𝜏1 × 𝜏2) = T (𝜏1 ⊗ 𝜏2) ≜ T (𝜏1) × T (𝜏2)
While contexts are interpreted as

T (·𝐼 ) = T (·𝑆 ) = · T (𝑥 : 𝜏1) = T (𝜏1) T (Γ1, Γ2) = T (Γ1),T (Γ2)

T (Δ1;Δ2) = T (Δ1),T (Δ2) T (𝑟 [Δ]) = T (Δ) T (𝑟 [Γ]) = T (Γ)
At the term-level, the translation is the identity function with the exception of the region operators,

which are simply erased by the translation. We can prove by induction:

Theorem 4.2. If Γ ⊢ 𝑀 : 𝜏 in 𝜆INI then T (Γ) ⊢𝑁𝐼 T (𝑀) : T (𝜏) in 𝜆2INI.

Furthermore, this translation is sound and fully abstract:

Theorem 4.3. Let Γ ⊢ 𝑡1 : 𝜏 and Γ ⊢ 𝑡2 : 𝜏 in 𝜆INI then J𝑡1K = J𝑡2K if, and only if, JT (𝑡1)K = JT (𝑡2)K.

Proof. The proof follows by induction. □

It is also possible to translate the non-modal multiplicative (⊗, ⊸) fragment of 𝜆INI into the

I-layer of 𝜆2
INI
, by translating the types as follows:

T ′(B) ≜MB T ′(𝜏1 ⊗ 𝜏2) ≜ T ′(𝜏1) ⊗ T ′(𝜏2) T ′(𝜏1 ⊸ 𝜏2) ≜ T ′(𝜏1) ⊸ T ′(𝜏2)
The contexts are translated componentwise. Once again, the term translation is the identity function

and the modalities are erased from terms and contexts.

Theorem 4.4. If Γ ⊢ 𝑡 : 𝜏 in 𝜆INI then T ′(Γ) ⊢𝐼 T ′(𝑡) : T ′(𝜏) in 𝜆2INI.
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1:14 Anon.

Proof. The proof follows by induction on the typing derivation Γ ⊢ 𝑡 : 𝜏 . □

By direct inspection the translation is sound and fully abstract with respect with the denotational

semantics of 𝜆INI and 𝜆
2

INI
.

Remark 4.5. It is not possible to translate the whole 𝜆INI into 𝜆
2

INI
. Since only one of the languages

of 𝜆2
INI

has arrow types and there is no way of moving from I into NI, the translation would need to

map 𝜆INI programs into I programs, which can only write probabilistically independent programs,

making it impossible to translate the × type constructor. By adding an additive function type to

the NI-layer of 𝜆2
INI
, it would be possible to extend the first translation so that it encompasses the

whole language; however, many of the concrete models that we will consider in the next section do

not support an additive function type in the NI-layer.

5 CATEGORICAL SEMANTICS AND CONCRETE MODELS
In this section, we present the general, categorical semantics of 𝜆2

INI
, by abstracting the proba-

bilistic semantics we saw in the previous section. Then, we present a variety of concrete models for

𝜆2
INI
, based on existing semantics for effectful languages. Our soundness theorem ensures natural

notions of separation across these models.

5.1 Categorical Semantics of 𝜆2INI
Suppose we have two effectful languages, L1 and L2. The first one has a product type × which

allows for the sharing of resources, while the second one has the disjoint product type ⊗. Further-
more, we assume that L2 has a unary type constructorM linking both languages. The intuition

behind this decision is that an element of typeM𝜏 is a computation which might share resources.

From a language design perspective, the constructorM serves to encapsulate a possibly dependent

computation in an independent environment.

The first question is to understand how the connectives × and ⊗ should be interpreted categor-

ically. For ×, we need a comonoidal structure to duplicate and erase computation. This kind of

structure is captured by CD categories, which are monoidal categories where every object 𝐴 comes

equipped with a commutative comonoid structure 𝐴→ 𝐴 ⊗𝐴 and 𝐴→ 𝐼 making certain diagrams

commute [Cho and Jacobs 2019]. For ⊗, we want to restrict copying—the separating layer of our

language has a linear type system—so ⊗ should be a monoidal product.

Finally, to model the type constructorM, the usual categorical idea is that it should be some kind

of functor from L1 to L2. Let us look at some of the intuitions provided by the type system. The

typeM(𝜏1×𝜏2) is for computations that may share resources and output both 𝜏1 and 𝜏2. Meanwhile,

the typeM𝜏1 ⊗ M𝜏2 is for computations that output 𝜏1 and 𝜏2 while using separate resources.

This reading suggest that there should not be maps fromM(𝜏1 × 𝜏2) toM𝜏1 ⊗M𝜏2, since there

is no way of separating resources once they have been shared, but there should be maps from

M𝜏1 ⊗M𝜏2 toM(𝜏1 × 𝜏2), since separation is a specific example of sharing.

Categorically, the existence of these maps is captured by applicative functors, also known as lax

monoidal functors, which are functors 𝐹 : (C, ⊗𝐶 , 𝐼𝐶 ) → (D, ⊗𝐷 , 𝐼𝐷 ) between monoidal categories,

equipped with morphisms 𝜇𝐴,𝐵 : 𝐹 (𝐴) ⊗𝐷 𝐹 (𝐵) → 𝐹 (𝐴 ⊗𝐶 𝐵) and 𝜖 : 𝐼𝐷 → 𝐹 (𝐼𝐶 ) making certain

diagrams commute [Borceux 1994]. Thus, we are led to our categorical model for 𝜆2
INI
.

Definition 5.1. A 𝜆2
INI

model is a triple (C,M,M) whereC is a symmetric monoidal closed category

with weak coproducts; M is a distributive CD category with coproducts, i.e., 𝐴 ⊗𝑀 (𝐵 +𝑀 𝐶) �
(𝐴 ⊗𝑀 𝐵) +𝑀 (𝐴 ⊗𝑀 𝐶); andM : M→ C is lax monoidal.
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1:15

We clarify the fact that weak coproducts are similar to regular coproducts except that the universal

property only guarantees the existence of an arrow 𝐴 ⊕ 𝐵 → 𝐶 making the coproduct diagram

commute, not uniqueness. Furthermore, contrary to M, distributivity in C holds automatically.

Lemma 5.2. In every symmetric monoidal closed category with weak coproducts, the following
isomorphism holds: 𝐴 ⊗ (𝐵 ⊕ 𝐶) � (𝐴 ⊗ 𝐵) ⊕ (𝐴 ⊗ 𝐶).

Proof. By assumption, the functor 𝐴 ⊗ (−) is a left adjoint and, therefore, by Lemma 3.5 in

[Kainen 1971], preserves weak coproducts and we can conclude. □

The denotational semantics is given in Figure 7 and most of the equational theory is presented in

Figure 11, which can be found in Appendix B. Note that we omit the usual rules such as structural

axioms and substitution.

Soundness. In categorical models, the soundness theorem of 𝜆2
INI

can be stated as follows:

Theorem 5.3 (Soundness). Let · ⊢𝐼 𝑡 : 𝜏1 ⊗ 𝜏2 then J𝑡K = 𝑓 ⊗ 𝑔, where 𝑓 and 𝑔 are morphisms
𝐼 → J𝜏1K and 𝐼 → J𝜏2K, respectively.

From a proof-theoretic perspective, the soundness theorem states that for every proof of type

· ⊢ 𝜏1 ⊗ 𝜏2, we can assume that the last rule is the introduction rule for ⊗.
Establishing soundness requires additional categorical machinery, so we defer the proof to

Section 6. We highlight the fact, however, that like the 𝜆INI case, we will prove a more general

version of Theorem 5.3 which will imply properties for any well-typed 𝜆2
INI

program and will also

provide a list of requirements base types and operations must satisfy in order to be soundly added

to the calculus. In the rest of the section, we will exhibit a range of concrete models for 𝜆2
INI
.

5.2 Concrete models
To warm up, we present some basic probabilistic models 𝜆2

INI
. While prior work has also investi-

gated similar models [Azevedo de Amorim 2023], we adapt these models to 𝜆2
INI

and explain how

our soundness theorem ensures independence.

5.2.1 Discrete Probability. Our first concrete model is a different semantics for discrete probability.

For the sharing category, we take the category CountStoch with countable sets as objects, and

transition matrices as morphisms, i.e. functions 𝑓 : 𝐴×𝐵 → [0, 1] such that for every 𝑎 ∈ 𝐴, 𝑓 (𝑎,−)
is a (discrete) probability distribution [Fritz 2020].

For the independent category, we take the probabilistic coherence space model of linear logic, a

well-studied semantics for discrete probabilistic languages [Danos and Ehrhard 2011]. This model

was originally used to explore the connections between probability theory and linear logic, and

has recently been used to interpret recursive probabilistic programs and recursive types [Tasson

and Ehrhard 2019]; it is also fully-abstract for probabilistic PCF [Ehrhard et al. 2018].

Definition 5.4 (Danos and Ehrhard [2011]). A probabilistic coherence space (PCS) is a pair ( |𝑋 |,P(𝑋 ))
where |𝑋 | is a countable set and P(𝑋 ) ⊆ |𝑋 | → R+ satisfies:

• ∀𝑎 ∈ |𝑋 | ∃𝜀𝑎 > 0 𝜀𝑎 · 𝛿𝑎 ∈ P(𝑋 ), where 𝛿𝑎 (𝑎′) = 1 iff 𝑎 = 𝑎′ and 0 otherwise;

• ∀𝑎 ∈ |𝑋 | ∃𝜆𝑎 ∀𝑥 ∈ P(𝑋 ) 𝑥𝑎 ≤ 𝜆𝑎 ;

• P(𝑋 )⊥⊥ = P(𝑋 ), where P(𝑋 )⊥ = {𝑥 ∈ |𝑋 | → R+ | ∀𝑣 ∈ P(𝑋 ) ∑𝑎∈ |𝑋 | 𝑥𝑎𝑣𝑎 ≤ 1}.

We can define a category PCoh where objects are probabilistic coherence spaces and morphisms

𝑋 ⊸ 𝑌 are matrices 𝑓 : |𝑋 | × |𝑌 | → R+ such that for every 𝑣 ∈ P(𝑋 ), 𝑓 𝑣 ∈ P(𝑌 ), where
(𝑓 𝑣)𝑏 =

∑
𝑎∈ |𝑋 | 𝑓(𝑎,𝑏)𝑣𝑎 . It is well-known that this category is a SMCC with coproducts; we will

use the explicit definition of the monoidal product.
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1:16 Anon.

Var

𝜏 × Γ 𝑖𝑑𝜏×𝑑𝑒𝑙Γ−−−−−−→ 𝜏

Let

Γ
𝑀−→ 𝜏1 Γ × 𝜏1

𝑁−→ 𝜏2

Γ
𝑐𝑜𝑝𝑦;(𝑖𝑑×𝑀) ;𝑁
−−−−−−−−−−−−→ 𝜏2

× Intro

Γ
𝑀−→ 𝜏1 Γ

𝑁−→ 𝜏2

Γ
𝑐𝑜𝑝𝑦;𝑀×𝑁
−−−−−−−−→ 𝜏1 × 𝜏2

× Elim𝑖

Γ
𝑀−→ 𝜏1 × 𝜏2

Γ
𝑀 ;(𝑖𝑑𝜏𝑖 ×𝑑𝑒𝑙)−−−−−−−−−−→ 𝜏𝑖

+ Intro𝑖
Γ

𝑀−→ 𝜏1

Γ
𝑀 ;𝑖𝑛𝑖−−−−→ 𝜏1 + 𝜏2

+ Elim
Γ1

𝑁−→ 𝜏1 + 𝜏2 Γ2 × 𝜏1
𝑀1−−→ 𝜏 Γ2 × 𝜏2

𝑀2−−→ 𝜏

Γ1, Γ2
𝑁×𝑖𝑑Γ

2−−−−−−→ (𝜏1 + 𝜏2) × Γ2 � (𝜏1 × Γ2) + (𝜏2 × Γ2)
[𝑀1,𝑀2 ]−−−−−−→ 𝜏

Var

𝜏
𝑖𝑑𝜏−−→ 𝜏

Abstraction

Γ ⊗ 𝜏1
𝑡−→ 𝜏2

Γ
cur(𝑡 )
−−−−→ 𝜏1 ⊸ 𝜏2

Application

Γ1
𝑡−→ 𝜏1 ⊸ 𝜏2 Γ2

𝑢−→ 𝜏1

Γ1 ⊗ Γ2
(𝑡⊗𝑢) ;ev
−−−−−−→ 𝜏2

⊗ Intro

Γ1
𝑡−→ 𝜏1 Γ2

𝑢−→ 𝜏2

Γ1 ⊗ Γ2
𝑡⊗𝑢−−−→ 𝜏1 ⊗ 𝜏2

⊗ Elim

Γ1
𝑡−→ 𝜏1 ⊗ 𝜏2 Γ2 ⊗ 𝜏1 ⊗ 𝜏2

𝑢−→ 𝜏

Γ1 ⊗ Γ2
(𝑖𝑑⊗𝑡 ) ;𝑢
−−−−−−→ 𝜏

⊕ Intro𝑖

Γ
𝑡−→ 𝜏𝑖

Γ
𝑡 ;𝑖𝑛𝑖−−−→ 𝜏1 + 𝜏2

⊕ Elim

Γ1
𝑢−→ 𝜏1 + 𝜏2 𝜏1 ⊗ Γ2

𝑡1−→ 𝜏 𝜏2 ⊗ Γ2
𝑡2−→ 𝜏

Γ1, Γ2
𝑢⊗𝑖𝑑Γ

2−−−−−→ (𝜏1 + 𝜏2) ⊗ Γ2 � (𝜏1 ⊗ Γ2) + (𝜏2 ⊗ Γ2)
[𝑡1,𝑡2 ]−−−−−→ 𝜏

Sample

𝜏1 × · · · × 𝜏𝑛
𝑀−→ 𝜏 Γ𝑖

𝑡𝑖−→M𝜏𝑖

Γ1 ⊗ · · · ⊗ Γ𝑛
𝑡1⊗···⊗𝑡𝑛−−−−−−−→M𝜏1 ⊗ · · · ⊗ M𝜏𝑛

𝜇
−→M(𝜏1 × · · · × 𝜏𝑛)

M𝑀−−−→M𝜏

Fig. 7. Categorical Semantics: 𝜆2INI

Definition 5.5. Let ( |𝑋 |,P(𝑋 )) and ( |𝑌 |,P(𝑌 )) be PCS, we define 𝑋 ⊗ 𝑌 = ( |𝑋 | × |𝑌 |, {𝑥 ⊗ 𝑦 |
𝑥 ∈ P(𝑋 ), 𝑦 ∈ P(𝑌 )}⊥⊥), where (𝑥 ⊗ 𝑦) (𝑎, 𝑏) = 𝑥 (𝑎)𝑦 (𝑏).

We can now define a functorM : CountStoch→ PCoh.

Lemma 5.6 (see, e.g., Azevedo de Amorim [2023]). Let 𝑋 be a countable set, the pair (𝑋, {𝜇 : 𝑋 →
R+ | ∑𝑥 ∈𝑋 𝜇 (𝑥) ≤ 1}) is a PCS. Any CountStoch morphism 𝑋 → 𝑌 is also a PCoh morphism.

Lemma 5.7 (Azevedo de Amorim [2023]). The functorM : CountStoch→ PCoh is lax monoidal.

Summing up, we have a model of 𝜆2
INI

based on probabilistic coherence spaces.

Theorem 5.8. The triple (PCoh,CountStoch,M) is a 𝜆2INI model.

Proof. CountStoch is well-known to be a CD category with coproducts [Fritz 2020], and PCoh
is a symmetric monoidal closed category with coproducts because it is a model of linear logic [Danos

and Ehrhard 2011]. Finally, lax monoidality ofM is given by the previous lemma. □
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In PCoh it is possible to show thatM𝜏1 ⊗M𝜏2 ⊆ M(𝜏1 ×𝜏2) meaning that well-typed programs

of typeM𝜏1 ⊗M𝜏2 are denoted by joint distributions over 𝜏1 × 𝜏2. Furthermore, by taking a closer

look at Definition 5.5 we see that 𝜇𝐴 ⊗ 𝜇𝐵 corresponds exactly to the product distribution of 𝜇𝐴 and

𝜇𝐵 , so our soundness theorem implies that closed programs of typeM𝜏1 ⊗ M𝜏2 are denoted by

independent probability distributions.

Something interesting about this model is that it allows encoding of one of the if-statements from

Barthe et al. [2019], where they leverage the fact that independence is closed under if-statements of

deterministic guards. In this model we can represent this deterministic if-statement as the program:

ifD : (M1⊕M1)⊸ 𝜏 ⊸ 𝜏 ⊸ 𝜏

ifD 𝑏 𝑡1 𝑡2 = if 𝑏 then 𝑡1 else 𝑡2

5.2.2 Continuous Probability. Next, we consider models for continuous probability. For the shar-

ing layer, the generalization of CountStoch to continuous probabilities is BorelStoch, which has

standard Borel spaces as objects and Markov kernels as morphisms [Fritz 2020]; see Appendix C

for details. For the separating layer, we want a model of linear logic that can interpret continuous

randomness. We use a model based on perfect Banach lattices.

Definition 5.9 (Azevedo de Amorim and Kozen [2022]). The category PBanLat1 has perfect Banach
lattices as objects and order-continuous linear functions with norm at most one as morphisms.

Intuitively, a perfect Banach lattice is a Banach space equipped with a lattice structure and an

involutive linear negation. For every measurable space (𝑋, Σ𝑋 ) the space of signed measures over

it is a perfect Banach space, meaning that it can, for instance, interpret continuous probability

distributions over the real line. Furthermore, the map assigning (𝑋, Σ𝑋 ) to its space of signed

measures is functorial and lax monoidal.

Theorem 5.10 (Azevedo de Amorim and Kozen [2022]). There is a lax monoidal functor M :

BorelStoch→ PBanLat1.

Theorem 5.11. The triple (PBanLat1,BorelStoch,M) is a 𝜆2INI model.

Proof. The category BorelStoch has a CD structure and has coproducts because it is isomorphic

to the Kleisli category of a commutative monad over the category Meas [Fritz 2020]. The category
PBanLat1 is a model of classical linear logic, making it a SMCC with coproducts [Azevedo de

Amorim and Kozen 2022]. The lax monoidality ofM follows from the previous theorem. □

This model can be seen as the continuous generalization of the previous model, since there are

full and faithful embeddings CountStoch ↩→ BorelStoch and PCoh ↩→ PBanLat1 [Azevedo de

Amorim and Kozen 2022]. In this model, our soundness theorem once again ensures probabilistic

independence, i.e. programs of typeM𝜏1 ⊗M𝜏2 are denoted by independent distributions.

Something interesting about vector-space-based models of linear logic is that their monoidal unit,

usually R, is not a terminal object and form a model of affine linear logic, since there is always a

linear transformation𝑉 ⊸ R that maps everything to 0. From a programming point of view this has

unexpected consequences, since for every well-typed program · ⊢ 𝑡 : 𝜏 , the program let 𝑥 = ∗ in 𝑡

is denotationally equal to the constant 0 function.

5.2.3 Non-Determinism and Communication. Next, we show that the relational model of linear

logic gives rise to a 𝜆2
INI

model, with applications to distributed programming.

Semantics. Our starting point is the category Rel of sets and binary relations, one of the most

well-known models of linear logic. By pairing this category with the Kleisli category SetP , for the
powerset monad P we immediately obtain a model for 𝜆2

INI
.
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Theorem 5.12. The triple (Rel, SetP, 𝑖𝑑) is a 𝜆2INI model.

Proof. Binary relations over sets 𝐴 and 𝐵 are represented either as subsets 𝑅 ⊆ 𝐴 × 𝐵 or,

equivalently, as functions 𝐴→ P(𝐵). From this observation it is possible to show that the identity

functor is an isomorphism and it easily follows from this that 𝑖𝑑 is lax monoidal. Since Rel is a
model of linear logic, it has coproducts and, by isomorphism, so does SetP . □

Application to Distributed Programming. While this model arises from linear logic, we show that

it leads to a suitable language for distributed programming. We assume a two-tier approach to

programming with communication: the NI language is used for writing local programs, while

the I language is used to orchestrate the communication between local code. Programs of type

M𝜏 correspond to local computations that can be manipulated by the communication language.

Programs in the 𝐼 language are interpreted as maps of the form 𝐴→ P(𝐵); we view these maps as

allowing non-deterministic or lossy communication.

To align the syntax with this interpretation, we tweak the syntax sample 𝑡𝑖 as 𝑥𝑖 in 𝑀 to

send 𝑡𝑖 as𝑥𝑖 in𝑀 which sends the values computed by the local programs 𝑡𝑖 , binds them to 𝑥𝑖 and

continues as the local program 𝑀 . To see how how distributed programs can be written in this

language, we consider a simple distributed voting protocol between two parties. We suppose that

there is a leader that receives two messages containing the votes and if they are the same, the

election is decided and the leader announces the winner. If the votes disagree, the leader outputs a

tagged unit value saying that there has been a draw. In 𝜆2
INI
, the leader can be implemented as:

leader :MN⊗MN ⊸M(N ⊕ 1)
leader = 𝜆 𝑥1 𝑥2. send𝑥1, 𝑥2 as𝑛1, 𝑛2 in if 𝑛1 = 𝑛2 then (in1 𝑛1) else (in2 ())

Given a program votes :MN ⊗MN that computes what each agent will vote, the full distributed

program can be represented as the application leader votes. Note that if either of the messages

drops, i.e. the input is the empty set, the whole protocol never terminates.

Soundness theorem. In this model, our soundness result ensures that if we have a closed program

of typeM𝜏1 ⊗M𝜏2, then it can be factored as two local programs that can be run locally, and do

not require any extra communication other than the send instructions. To understand why this

guarantee is non-trivial, consider the problematic program from Section 4:

message :M(1 + 1) ⊬𝐼 if message then (tt ⊗ tt) else (ff ⊗ ff) :MB ⊗MB

Under our interpretation, the if-statement is conditioning on the contents of the program vari-

able message and producing two local computations that have the same outputs. There are two

potential sources of implicit communication in this program. First, the contents of message are
non-deterministic, so the local computations must communicate in order to agree on what value

to return. Second, by conditioning on the same value, the message must be sent to both local

computations. These indirect communications have already been addressed in the choreography

literature, as illustrated by Hirsch and Garg [2022], where their language allows pattern matching

on local computation but the chosen branch must be broadcast to programs that depend on it,

which is not problematic in a setting where communication is reliable.

To illustrate the soundness guarantee, we can revisit the distributed voting example. By the

soundness theorem, the program votes is equal to 𝑡1 ⊗ 𝑡2 for programs 𝑡1, 𝑡2 :MN. Thus, the only

communication required are explicit sends.

Expressivity and Limitations. Intuitively, closed programs in 𝜆2
INI

of typeM𝜏 are equivalent to

send 𝑡𝑖 as 𝑥𝑖 in𝑀 , which we view as a local program𝑀 that starts by receiving 𝑛 different messages,

runs its body𝑀 with the received messages as bound variables, and makes its output available to
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be sent to a different local computation. Therefore, each local program may only have one block of

receives at the beginning and one send at the end, limiting the allowed communication patterns.

These limitations have been addressed in other modal approaches to distributed programming by

having a static 𝐴 set of agents and a modality annotated by elements of 𝐴 denoting computations

that are executed by a particular agent of the distributed system [Hirsch and Garg 2022].

RelatedWork. Distributed programming is challenging and error-prone, and there is a long history

of language design in this setting. Two notable examples are session types [Hüttel et al. 2016] and

choreographic programming [Montesi 2014]. Session types adopts a linear typing discipline where

type constructors model the desired protocol. On the other hand, choreographic programming

adopts a monolithic approach: The entire system is written as a single program that can be compiled

to “local computations”, with the compiler adding the appropriate communication instructions.

Our model of 𝜆2
INI

blends aspects of both approaches. It still has a substructural communication

type system, but it also represents protocols using a single global program with a two-tier language

that distinguishes between local and global computation. We leave a more thorough comparison

between these languages for future work.

5.2.4 Commutative Effects. In this section we will present a large class of models based on com-

mutative monads which are monads where, in a Kleisli semantics of effects, the program equation

(let 𝑥 = 𝑡 in let 𝑦 = 𝑢 in𝑤) ≡ (let 𝑦 = 𝑢 in let 𝑥 = 𝑡 in𝑤) holds.
The Kleisli category of commutative monads has many useful properties.

Theorem 5.13 (Fritz [2020]). Let C be a Cartesian category and𝑇 a commutative monad over it. The
Kleisli category C𝑇 is a CD category.

Lemma 5.14. Let C be a distributive category and 𝑇 a monad over it. Its Kleisli category C𝑇 has
distributive coproducts.

Proof. It is straightforward to show that Kleisli categories inherit coproducts from the base

category. Furthermore, by using the distributive structure of C, applying 𝑇 to it and using the

functor laws, it follows that C𝑇 is distributive. □

Another useful category of algebras is the category of algebras and plain maps C̃𝑇
which has 𝑇

algebras as objects and C̃𝑇 ((𝐴, 𝑓 ), (𝐵,𝑔)) = C(𝐴, 𝐵).

Theorem 5.15 (Simpson [1992]). Let C be a Cartesian closed category and 𝑇 a strong monad over it.
The category of 𝑇 -algebras and plain maps is Cartesian closed, and 1 is a terminal object.

Lemma 5.16. Let C be a cocartesian category and 𝑇 a monad over it. The category of 𝑇 -algebras and
plain maps has weak coproducts.

Proof. Let (𝐴, 𝛼) and (𝐵, 𝛽) be two 𝑇 -algebras. We define (𝐴, 𝛼) ⊕ (𝐵, 𝛽) = (𝑇 (𝐴 + 𝐵), 𝜇𝐴+𝐵).
Let us prove that this construction satisfies the weak universal property. We start by defining the

injection morphism 𝑖𝑛′
1
: (𝐴, 𝛼) → (𝑇 (𝐴 + 𝐵), 𝜇), which is defined as 𝑖𝑛1;𝜂𝐴+𝐵 , where 𝑖𝑛1 is the

injection morphism in C. Next, if 𝑓1 : (𝐴, 𝛼) → (𝐶,𝛾) and 𝑓2 : (𝐵, 𝛽) → (𝐶,𝛾) are plain maps, their

weak universal arrow is 𝑇 [𝑓1, 𝑓2];𝛾 , where [𝑓1, 𝑓2] is the cocartesian universal arrow in C.
The weak universal property follows by 𝑖𝑛𝑖 ;𝜂𝐴+𝐵 ;𝑇 [𝑓1, 𝑓2];𝛾 = 𝑖𝑛𝑖 ; [𝑓1, 𝑓2];𝜂𝐶 ;𝛾 = 𝑓𝑖 □

Therefore, we choose the Kleisli category to interpret NI and the category of 𝑇 -algebras and

plain maps to interpret I. We only have to show that there is an applicative functor between them.

Theorem 5.17. There exists an applicative functor 𝜄 : C𝑇 → C̃𝑇 .
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Proof. The functor acts by sending objects 𝐴 to the free algebra (𝑇𝐴, 𝜇𝐴) and morphisms

𝑓 : 𝐴 → 𝑇𝐵 to 𝑓 ∗. Now, for the lax monoidal structure, consider the natural transformation

𝜇 ◦ 𝑇𝜏 ◦ 𝜎 : 𝑇𝐴 × 𝑇𝐵 → 𝑇 (𝐴 × 𝐵) and 𝜂1 : 1 → 𝑇1, where 𝜏 and 𝜎 are the strengths of 𝑇 . Lax

monoidality follows from 𝑇 being commutative and the operation 𝑑𝑒𝑙𝐴 : 𝐴→ 1 being natural. □

Theorem 5.18. The triple (C̃𝑇 ,C𝑇 , 𝜄) is a 𝜆2INI model.

It is also possible to define a variant to this algebra model using the Eilenberg-Moore category

since this category is known to be symmetric monoidal closed under a few minor hypothesis

[Azevedo de Amorim 2023].

Name generation. Simple concrete examples of commutative effects are probability and non-

determinism, which we saw before. A less standard example is the name generation monad used to

give semantics to the𝜈-calculus, a language that has a primitive for generating “fresh” symbols [Stark

1996]. This is a useful abstraction, for instance, in cryptography, where a new symbol might be a

secret that you might not want to share with adversaries.

A concrete semantics to the 𝜈-calculus was presented by Stark [1996] where the base category is

the functor category [Inj, Set], with Inj being the category of finite sets and injective functions. In

this case the (commutative) name generation monad acts on functors as

𝑇 (𝐴) (𝑠) = {(𝑠 ′, 𝑎′) | 𝑠 ′ ∈ Inj, 𝑎′ ∈ 𝐴(𝑠 + 𝑠 ′)}/∼

where (𝑠1, 𝑎1) ∼ (𝑠2, 𝑎2) if, and only if, for some 𝑠0 there are injective functions 𝑓1 : 𝑠1 → 𝑠0 and

𝑓2 : 𝑠2 → 𝑠0 such that 𝐴(𝑖𝑑𝑠 + 𝑓1)𝑎1 = 𝐴(𝑖𝑑𝑠 + 𝑓2)𝑎2. The intuition is that 𝑇 (𝐴) is a computation

that, given a finite set 𝑠 of names used, produces the newly generated names 𝑠 ′, and a value 𝑎′. By

Theorem 5.18 the triple ( �[Inj, Set]𝑇 , [Inj, Set]𝑇 , 𝜄) is a 𝜆2
INI

model.

Syntactically, we can extend the type grammar of the 𝑁𝐼 language with a type Name for names,

and the 𝑁𝐼 language with an operation · ⊢ fresh : Name for name generation. Our soundness

theorem says that for a program of typeM𝜏 ⊗M𝜏 , the names used to compute the first component

are disjoint from the ones used to compute the second component.

Example: Avoiding Replay Attacks. From a programming point of view, it is important to be able

to enforce at the type-level when the set of names being used are disjoint, since failing to do so

can create subtle security bugs. Consider the use case where fresh corresponds to a primitive that

generates a new encryption key. A common security vulnerability is using the same key to encrypt

distinct messages.

Consider a protocol that receives two distinct messages, generates two distinct encryption keys

and outputs the two encrypted message. Furthermore, we will assume, as it is frequently the case in

practice, that the key ismuch smaller than themessage. For the sake of simplicitywewill assume that

messages are twice as long as keys and that there is a primitive split :M(𝑚𝑠𝑔)⊸M(𝑚𝑠𝑔)⊗M(𝑚𝑠𝑔)
that splits a message into its two key-sized blocks. In this setting we can write the program that

receives as input two messages and outputs their encryption.

· ⊢𝐼 𝜆𝑚1𝑚2 .

let 𝑓1 ⊗ 𝑓2 = split𝑚1 in

let 𝑓 ′
1
⊗ 𝑓 ′

2
= split𝑚2 in

sample 𝑓1, 𝑓2, fresh as 𝑥1, 𝑥2, 𝑘 in𝑀 ⊗ sample 𝑓 ′
1
, 𝑓 ′

2
, fresh as 𝑥1, 𝑥2, 𝑘 in𝑀

:M(𝑚𝑠𝑔)⊗M(𝑚𝑠𝑔)⊸M(𝑚𝑠𝑔)⊗M(𝑚𝑠𝑔),
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where 𝑀 = (𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (𝑥1, 𝑘)) ++ (𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (𝑥2, 𝑘)) and ++ is the list concatenation operation. Note

that if we were to split𝑚1 twice, the program would no longer type check, effectively making

certain bugs unrepresentable in the language.

Remark 5.19 (Call-by-Value and Call-by-Name Semantics of Effects). Categories of algebras and

plain maps were used as a denotational foundation for call-by-name programming languages while

Kleisli categories can be used to interpret call-by-value languages [Simpson 1992]. Thus, the I

language can be seen as a CBN interpretation of effects, while NI can be seen as a CBV interpretation

of effects. The operational interpretation of sample 𝑡 as 𝑥 in 𝑀 is to force the execution of CBN

computations 𝑡 , bind the results to 𝑥 , and run them eagerly in the program𝑀 .

5.2.5 Affine Bunched Typing. It is natural to wonder how BI is related to 𝜆2
INI
. We have seen that

certain fragments of the BI inspired language 𝜆INI embeds in 𝜆2
INI

. Semantically, bunched calculi are

interpreted using a doubly closed category (DCC), a single category that has both a Cartesian closed

and a (usually distinct) monoidal closed structure. In order to understand how these systems are

related, let us consider the affine variant of the bunched calculus, i.e., when the monoidal unit is a

terminal object in the semantic category, meaning that there is a discard operation 𝐴 ⊗ 𝐵 → 𝐴.

Given an affine BI model C, there is a morphism 𝐴 ⊗ 𝐵 → 𝐴 × 𝐵 given by the universal property of

products applied to the discard morphisms𝐴⊗𝐵 → 𝐴 and𝐴⊗𝐵 → 𝐵. Furthermore, by assumption

𝐼 � 1, where 1 is the unit for the Cartesian product and 𝐼 is the unit for the monoidal product.

Finally, such a structure makes the lax monoidality diagrams commute, making the identity functor

𝑖𝑑 : (C,×, 1) → (C, ⊗, 𝐼 ) a lax monoidal functor between the two monoidal structures over C. Thus:

Theorem 5.20. For every cocartesian model of affine BI C the triple (C,C, 𝑖𝑑) is a model of 𝜆2INI.

Remark 5.21. From a more abstract point of view, by initiality of the syntactic model of 𝜆2
INI

(Theorem B.3) and the theorem above, there is a translation from 𝜆2
INI

to the bunched calculus. Thus,

affine bunched calculi can be seen as a degenerate version of our language, where the two layers

are collapsed into one.

Syntactic Control of Interference. To illustrate a useful model of the affine bunched calculus, let

us consider O’Hearn’s bunched language SCI+ [O’Hearn 2003]. This language allows allocating

memory and reasoning about aliasing, building on Reynolds’ Syntactic Control of Interference

(SCI), a linear type system. In the denotational semantics of SCI+, types are objects in the functor

category SetP(𝐿𝑜𝑐) , where P(𝐿𝑜𝑐) is the poset category of subsets of 𝐿𝑜𝑐 , an infinite set of names

(i.e., memory addresses). Intuitively, a presheaf maps a subset of locations to the set of computations

that use those locations. It is well-known that this category is a model of affine BI: The Cartesian

closed structure is given by the usual construction on presheaves, while the monoidal closed

structure is given by a different product on presheaves, called the Day convolution [O’Hearn 2003].

By Theorem 5.20 the triple (SetP(𝐿𝑜𝑐) , SetP(𝐿𝑜𝑐) , 𝑖𝑑) is a 𝜆2
INI

model and, therefore, satisfies its

soundness property. To understand what it means in this context, we look at how the model is

defined. Given presheaves 𝐴 and 𝐵 over P(𝐿𝑜𝑐), the monoidal product 𝐴 ⊗ 𝐵 is defined as

(𝐴 ⊗ 𝐵) (𝑋 ) ≜ {(𝑎, 𝑏) ∈ 𝐴(𝑋 ) × 𝐵(𝑋 ) | 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑎) ∩ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑏) = ∅}
(𝐴 ⊗ 𝐵) (𝑓 ) ≜ (𝐴𝑓 𝑎, 𝐵𝑓 𝑏)

The 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 function acts on sets and has a slightly technical definition that models which resources

in𝐿𝑜𝑐 were used to produce the set—the interested reader should consult the original paper [O’Hearn

2003]. At a high level, the disjointness of the support captures the fact that the memory locations

used to produce 𝑎 are disjoint from the memory locations used to produce 𝑏. Therefore, our

soundness theorem guarantees that the components of closed programs of typeM𝜏1 ⊗M𝜏2 do

not share any memory locations.
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types 𝜏 ::= cell | exp | comm | 𝜏 → 𝜏 | 𝜏 ⊸ 𝜏 | 𝜏 × 𝜏
contexts Γ ::= · | 𝑥 : 𝜏 | Γ; Γ | Γ, Γ

Fig. 8. Types and Terms: SCI+

Γ ⊢ 𝑀 : comm Γ ⊢ 𝑁 : comm

Γ ⊢ 𝑀 ;𝑁 : comm

Γ1 ⊢ 𝑀 : comm Γ2 ⊢ 𝑁 : comm

Γ1, Γ2 ⊢ 𝑀 | |𝑁 : comm

Γ, 𝑥 : cell ⊢ 𝑀 : comm

Γ ⊢ new𝑥 .𝑀 : comm

Γ ⊢ 𝑀 : cell Γ ⊢ 𝑁 : exp

Γ ⊢ 𝑀 := 𝑁 : comm

Γ ⊢ 𝑀 : 𝜏1 → 𝜏2 Γ ⊢ 𝑁 : 𝜏1

Γ ⊢ 𝑀 𝑁 : 𝜏2

Γ1 ⊢ 𝑀 : 𝜏1 ⊸ 𝜏2 Γ2 ⊢ 𝑁 : 𝜏1

Γ1, Γ2 ⊢ 𝑀 𝑁 : 𝜏2

Fig. 9. Typing Rules: SCI+ (selected)

For our purposes, we are mainly interested in the SCI+ operations presented in Figure 9. The

first two rules are for composing commands either sequentially or in parallel, respectively. The

following two rules are the ones related to memory manipulation, where the first one allocates a

new memory location and the second one assigns a value to a location. The final two are the two

applications: the first allows the context to be shared, while the second does not.

A notorious difficulty of running stateful programs in parallel is that there might be concurrent

writes to the same memory location. This is avoided in SCI+ by using the separating concatenation

of contexts, guaranteeing that no such conflict of writes can occur. When programs are sequentially

composed, no such issues come up and the context may be shared. When a new memory cell is

allocated using the new𝑥 .𝑀 syntax, a new variable is bound to the context representing the new

location which is disjoint from the existing ones, hence the separating context extension.

SCI+ in 𝜆2INI. As we have explained, a direct consequence of Theorem 5.20 is that there is a trans-

lation of 𝜆2
INI

into the BI calculus. However, it is not a direct consequence that the cell and command

operations can be given similar typing rules and semantics to their original formulation. By slightly

modifying 𝜆2
INI

we can accommodate them as we show in Figure 10. Sequential composition is done

in the NI language while parallel composition is done at the I language. The cell assignment rule is

added to the NI language, since there is no reason to require that a cell’s address and its value are

computed using separate locations. For cell allocation, the original rule requires the new cell to be

disjoint from the existing ones, making it natural to use the I language.

Example 5.22 (O’Hearn [2003]). Consider the 𝜆2
INI

program (𝜆𝑥 𝑦. 𝑥 := 1;𝑦 := 2) 𝑧 𝑧. There are
two possible types for the 𝜆-abstraction. The typeMcell⊸Mcell⊸Mcomm requires that the

input locations 𝑥 and 𝑦 must be disjoint, while the typeM(cell × cell)⊸Mcomm allows 𝑥 and 𝑦

to be shared. The former makes the application ill-typed, since the arguments to the abstraction

are the same, while the latter is well-typed. Note, however, that it is only well-typed because the

assignments are sequentially composed. If they were composed in parallel the program would be

ill-typed, just like in SCI+, since parallel composition requires disjoint memory locations.
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Seqential

Γ ⊢𝑁𝐼 𝑀 : comm Γ ⊢𝑁𝐼 𝑁 : comm

Γ ⊢𝑁𝐼 𝑀 ;𝑁 : comm

Parallel

Γ1 ⊢𝐼 𝑡 :Mcomm Γ2 ⊢𝐼 𝑢 :Mcomm

Γ1, Γ2 ⊢𝐼 𝑡 | |𝑢 :Mcomm

New

Γ, 𝑥 :Mcell ⊢𝐼 𝑡 :Mcomm

Γ ⊢𝐼 new𝑥 .𝑡 :Mcomm

Assign

Γ ⊢𝑁𝐼 𝑀 : cell Γ ⊢𝑁𝐼 𝑁 : exp

Γ ⊢𝑁𝐼 𝑀 := 𝑁 : comm

Fig. 10. Typing Rules: 𝜆2INI extended with SCI primitives

6 SOUNDNESS THEOREM
So far we have seen two proofs of soundness. For 𝜆INI, we proved soundness using logical

relations (Theorem 3.3). For 𝜆2
INI

with a probabilistic semantics, we used an observation about

algebras for the distribution monad (Theorem 4.1). This proof is slick, but the strategy does not

generalize to other models of 𝜆2
INI
.

Thus, to prove our general soundness theorem for 𝜆2
INI
, we will return to logical relations. The

statement of our soundness theorem is as follows.

Theorem 6.1. If · ⊢𝐼 𝑡 :M𝜏1 ⊗M𝜏2 then J𝑡K can be factored as two morphisms J𝑡K = 𝑓1 ⊗ 𝑓2, where
𝑓1 : 𝐼 →M J𝜏1K and 𝑓2 : 𝐼 →M J𝜏2K.

Logical relations are frequently used to prove metatheoretical properties of type theories and

programming languages. However, they are usually used in concrete settings, i.e., for a concrete

model where we can define the logical relation explicitly. In our case, however, this approach is not

enough, since we are working with an abstract categorical semantics of 𝜆2
INI

. Thus, we will leverage

the categorical treatment of logical relations, called Artin gluing, a construction originally used in

topos theory [Hyland and Schalk 2003; Johnstone et al. 2007].

A detailed description of this technique is beyond the scope of this paper. However, we highlight

some of the essential aspects here. We have already introduced our class of models for 𝜆2
INI
. Let

Γ ⊢𝐼 𝑡 : 𝜏 be a well-typed program. For every concrete model (C,M,M), we want to show that the

interpretation J𝑡K in this model must satisfy some properties in order to validate the soundness

theorem. At a high level, there are three steps to the gluing argument:

(1) Define a category of models of 𝜆2
INI

, and show that every interpretation J·K can be encoded

as a map from the syntactic model Syn to (C,M,M); where the syntactic model has types

as objects and typing derivations (modulo the equational theory of 𝜆2
INI

) as morphisms. This

property follows by showing that the syntactic model is initial.

(2) Define a triple (Gl(C),M, M̃)—where objects of the category Gl(C) are pairs (𝐴,𝑋 ⊆
C(𝐼 , 𝐴)), the subsets 𝑋 are viewed as predicates on 𝐴, and morphisms preserve these

predicates—and show that this structure is a model of 𝜆2
INI

. We call this the glued model and

there is an obvious forgetful model morphism (Gl(C),M, M̃) → (C,M,M).
(3) Using initiality, define a map L·M from the syntactic model Syn to the glued model. The data

of this map associates every I-type 𝜏 in 𝜆2
INI

to an object (𝐴𝜏 , 𝑋𝜏 ⊆ C(𝐼 , 𝐴𝜏 )); intuitively,
𝐴𝜏 ∈ C is the interpretation of 𝜏 under J·K, and the subset 𝑋𝜏 encodes the logical relation at

type 𝜏 , so this map defines a logical relation. The functor L·M and its codomain encode the

logical relations proof.

Finally, we can use L·M to map any global element in the syntactic category, i.e., well-typed term

· ⊢𝐼 𝑡 : 𝜏 , to an element of 𝑋𝜏 . By initiality of Syn, J𝑡K also is an element of 𝑋𝜏 , completing the
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proof by logical relations proof. We defer the details to Appendix B, where we also go over the

details of how to soundly add base types and operations to 𝜆2
INI
.

7 RELATEDWORK
Linear logics and probabilistic programs. A recent line of work uses linear logic as a powerful

framework to provide semantics to probabilistic programming languages. Notably, Ehrhard et al.

[2018] show that a probabilistic version of the coherence-space semantics for linear logic is fully

abstract for probabilistic PCF with discrete choice, and Ehrhard et al. [2017] provide a denotational

semantics inspired by linear logic for a higher-order probabilistic language with continuous random

sampling. Linear type systems have also been developed for probabilistic properties, like almost

sure termination [Dal Lago and Grellois 2019] and differential privacy [Azevedo de Amorim et al.

2019; Reed and Pierce 2010].

Our categorical model for 𝜆2
INI

is inspired by models of linear logic based on monoidal adjunctions,

most notably Benton’s LNL [Benton 1994]. From a programming languages perspective, these

models decompose the linear 𝜆-calculus with exponentials in two languages with distinct product

types each These two-level languages are very similar to 𝜆2
INI

, and indeed it is possible to show that

every LNL model is a 𝜆2
INI

model. At the same time, the class of models for 𝜆2
INI

is much broader

than LNL—none of the models presented in Section 5.2 are LNL models. Furthermore, the “shared”

layer in LNL models is Cartesian closed, which is unsuitable for programming with effects, due to

its call-by-name nature.

Higher-order programs and effects. There is a very large body of work on higher-order programs

effects, which we cannot hope to summarize here. The semantics of 𝜆INI is an instance of Moggi’s

Kleisli semantics, from his seminal work on monadic effects [Moggi 1991]; the difference is that

our one-level language uses a linear type system to enforce probabilistic independence.

Another well-known work in this area is Call-by-Push-Value (CBPV) [Levy 2001]. It is a two-level

metalanguage for effects which subsumes both call-by-value and call-by-name semantics. Each

level has a modality that takes from one level to the other one. There is a resemblance to 𝜆2
INI
, but

the precise relationship is unclear—none of our concrete models are CBPV models.

Our two-level language 𝜆2
INI

can also be seen as an application of a novel resource interpretation

of linear logic developed by Azevedo de Amorim [2023], which uses an applicative modality to

guarantee that the linearity restriction is only valid for computations, not values. Our focus is on

separation and effects: we show how different sum types for effectful computations can be naturally

accommodated in this framework, we consider a more general class of categorical models, and we

prove a soundness theorem ensuring separation for effectful computations.

Bunched type systems. Our focus on sharing and separation is similar to the motivation of another

substructural logic, called the logic of bunched implicates (BI) [O’Hearn and Pym 1999]. Like our

system, BI features two conjunctions modeling separation of resources, and sharing of resources.

Like in 𝜆INI, these conjunctions in BI belong to the same language. Unlike our 𝜆2
INI

, BI also features

two implications, one for each conjunction. The leading application of BI is in separations logic for

concurrent and heap-manipulating programs [O’Hearn 2007; O’Hearn et al. 2001], where pre- and

post-conditions are drawn from BI.

Though 𝜆INI also has a bunched type system, its semantics differs from the doubly closed

categorical semantics of BI. It is still unclear how to characterize the categorical semantics of 𝜆INI,

but we conjecture that it is equivalent to doubly strong monads over doubly closed categories.

Probabilistic independence in higher-order languages. There are a few probabilistic functional

languages with type systems that model probabilistic independence. Probably themost sophisticated
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example is due to Darais et al. [2019], who propose a type system combining linearity, information-

flow control, and probability regions for a probabilistic functional language. Darais et al. [2019]

show how to use their system to implement and verify security properties for implementations of

oblivious RAM (ORAM). Our work aims to be a core calculus capturing independence, with a clean

categorical model.

Lobo Vesga et al. [2021] present a probabilistic functional language embedded in Haskell, aiming

to verify accuracy properties of programs from differential privacy. Their system uses a taint-based

analysis to establish independence, which is required to soundly apply concentration bounds, like

the Chernoff bound. Unlike our work, Lobo Vesga et al. [2021] do not formalize their independence

property in a core calculus.

Probabilistic separation logics. A recent line of work develops separation logics for first-order,

imperative probabilistic programs, using formulas from the logic of bunched implications to

represent pre- and post-conditions. Systems can reason about probabilistic independence [Barthe

et al. 2019], but also refinements like conditional independence [Bao et al. 2021; Li et al. 2023], and

negative association [Bao et al. 2022]. These systems leverage different Kripke-style models for the

logical assertions; it is unclear how these ideas can be adapted to a type system or a higher-order

language. There are also quantitative probabilistic separation logics [Batz et al. 2022, 2019].

8 CONCLUSION AND FUTURE DIRECTIONS
We have presented two linear, higher-order languages with types that can capture probabilis-

tic independence, and other notions of separation in effectful programs. We see several natural

directions for further investigation.

Other variants of independence. In some sense, probabilistic independence is a trivial version

of dependence: it captures the case where there is no dependence whatsoever between two ran-

dom quantities. Researchers in statistics and AI have considered other notions that model more

refined dependency relations, such as conditional independence, positive association, and negative

dependence (e.g., [Dubhashi and Ranjan 1998]). Some of these notions have been extended to other

models besides probability; for instance, Pearl and Paz [1986] develop a theory of graphoids to
axiomatize properties of conditional independence. It would be interesting to see whether any of

these notions can be captured in a type system.

Non-commutative effects. Our concrete models encompass many kinds of monadic effects, but

we only support effects modeled by commutative monads. Many common effects are modeled by

non-commutative monads, e.g., the global state monad. It may be possible to extend our language

to handle non-commutative effects, but we would likely need to generalize our model and consider

non-commutative logics.

Towards a general theory of separation for effects. We have seen how in the presence of effects,

constructs like sums and products come in two flavors, which we have interpreted as sharing and

separate. Notions of sharing and separation have long been studied in programming languages

and logic, notably leading to separation logics. We believe that there should be a broader theory of

separation (and sharing) for effectful programs, which still remains to be developed.
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A SOUNDNESS PROOF 𝜆INI

We remind the readers the logical relation for types:

RB = 𝐷 (B)
R𝜏1⊗𝜏2 = {𝜇1 ⊗ 𝜇2 ∈ 𝐷 (J𝜏1K × J𝜏2K) | 𝜇𝑖 ∈ R𝜏𝑖 }
R𝜏1×𝜏2 = {𝜇 ∈ 𝐷 (J𝜏1K × J𝜏2K) | 𝜋𝑖 (𝜇) ∈ R𝜏𝑖 for 𝑖 ∈ {1, 2}}
R𝜏1⊸𝜏2 = {𝜇 ∈ 𝐷 (J𝜏1K→ 𝐷 (J𝜏2K)) | ∀𝜇 ′ ∈ R𝜏1 , 𝑥 ← 𝜇 ′; 𝑓 ← 𝜇; 𝑓 (𝑥) ∈ 𝑅𝜏2 }
R𝜏1→𝜏2 = {𝜇 ∈ 𝐷 (J𝜏1K→ 𝐷 (J𝜏2K)) | ∀𝜇 ′ ∈ 𝐷 (𝜏1 × (𝜏1 → 𝐷 (𝜏2)))

𝜇 ′
1
∈ R𝜏1 ∧ 𝜇 ′

2
= 𝜇 ⇒ (𝑥, ℎ) ← 𝜇 ′;ℎ(𝑥) ∈ 𝑅𝜏2 }.

And for contexts:

R · = 1

R𝑥 :𝜏 = R𝜏
RΓ1,Γ2 = {𝜇 ∈ 𝐷 (JΓ1K × JΓ2K) | 𝜋𝑖 (𝜇) ∈ RΓ𝑖 }
R𝑟 [Δ] = RΔ

R · = 1

R𝑥 :𝜏 = R𝜏
RΔ1;Δ2

= {𝜇1 ⊗ 𝜇2 ∈ 𝐷 (JΔ1K × JΔ2K) | 𝜇𝑖 ∈ RΔ𝑖
}

R𝑟 [Γ ] = RΓ

Theorem A.1. If Γ ⊢ 𝑡 : 𝜏 and 𝜇 ∈ RΓ then (𝑥 ← 𝜇; J𝑡K (𝑥)) ∈ R𝜏 .

Proof. Let the distribution above be 𝜈 . We prove 𝜈 ∈ R𝜏 by induction on the derivation of

Γ ⊢ 𝑡 : 𝜏 . When the context is separated, we may assume that 𝑥 ← 𝜇 is given by the list of the

marginal distributions, in which case we will represent them as a list 𝜇𝑖 .
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Const/Coin/Var. Trivial. For instance, Var𝑆 : 𝜈 = 𝑥𝑖 ← 𝜇𝑖 ; return 𝑥𝑖 = 𝜇𝑖 is in R𝜏𝑖 by assumption.

× Intro. We have 𝜈 = 𝛾 ← 𝜇;𝑥 ← J𝑡1K (𝛾);𝑦 ← J𝑡2K (𝛾); return (𝑥,𝑦). It is straightforward to

show that the first marginal of 𝜈 is 𝛾 ← 𝜇;𝑥 ← J𝑡1K (𝛾); return 𝑥 which, by the induction

hypothesis, in an element of R𝜏1 ; similarly, the second marginal of 𝜈 is an element of R𝜏2 .
× Elim. We have 𝜈 = 𝛾 ← 𝜇; (𝑥,𝑦) ← J𝑡K (𝛾); return 𝑥 . By the induction hypothesis, J𝑡K (𝛾) ∈

R𝜏1×𝜏2 and, by assumption, its marginals are elements of R𝜏1 and R𝜏2 .
⊗ Intro. Let 𝜇 be the distribution corresponding to Δ1, and let 𝜂 be the distribution corresponding

to Δ2. Since 𝐷 is a commutative monad [Borceux 1994], we may apply associativity and

commutativity to show:

𝜈 = 𝑥 ′← 𝜇;𝑦 ′← 𝜂;𝑥 ← J𝑡1K (𝑥 ′);𝑦 ← J𝑡2K (𝑦 ′); return (𝑥,𝑦)
= 𝑥 ′← 𝜇;𝑥 ← J𝑡1K (𝑥 ′);𝑦 ′← 𝜂;𝑦 ← J𝑡2K (𝑦 ′); return (𝑥,𝑦)
= (𝑥 ′← 𝜇;𝑥 ← J𝑡1K (𝑥 ′); return 𝑥) ⊗ (𝑦 ′← 𝜂;𝑦 ← J𝑡2K (𝑦 ′); return 𝑦) = 𝜈1 ⊗ 𝜈2 .

Furthermore, by induction hypothesis, 𝜈𝑖 ∈ R𝜏𝑖 so 𝜈 = 𝜈1 ⊗ 𝜈2 ∈ R𝜏1⊗𝜏2 as desired.
⊗ Elim. Let 𝜇𝑖 be the sequence of distributions corresponding to Γ1, and let 𝜂𝑖 be the sequence of

distributions corresponding to Γ2. We have:

𝜈 = 𝑥𝑖 ← 𝜇𝑖 ;𝑦𝑖 ← 𝜂𝑖 ; (𝑥,𝑦) ← J𝑡K (𝑥𝑖 );
= 𝑥𝑖 ← 𝜇𝑖 ; (𝑥,𝑦) ← J𝑡K (𝑥𝑖 );𝑦𝑖 ← 𝜂𝑖 ; J𝑢K (𝑦𝑖 , 𝑥,𝑦)
= (𝑥,𝑦) ← 𝜈1 ⊗ 𝜈2;𝑦𝑖 ← 𝜂𝑖 ; J𝑢K (𝑦𝑖 , 𝑥,𝑦)
= 𝑦𝑖 ← 𝜂𝑖 ;𝑥 ← 𝜈1;𝑦 ← 𝜈2; J𝑢K (𝑦𝑖 , 𝑥,𝑦)

where the third equality is by the induction hypothesis from the first premise. By the

induction hypothesis from the second premise, the final distribution is in R𝜏 , as desired.
Abstraction. By unfolding the definitions, we need to show

𝑥 ← 𝜇; 𝑓 ← (𝑥𝑖 ← 𝜇𝑖 ;𝛿𝜆𝑥.J𝑡K(𝑥𝑖 ) ); 𝑓 (𝑥) ∈ R𝜏2 ,
for some 𝜇 ∈ R𝜏1 . This distribution is equal to 𝑥𝑖 ← 𝜇𝑖 ;𝑥 ← 𝜇; 𝑓 ← 𝛿𝜆𝑥.J𝑡K(𝑥𝑖 ) ; 𝑓 (𝑥), by
associativity and commutativity. By the induction hypothesis and the fact that 𝛿 is the unit

of the monad, we can conclude this case.

Application. This case follows directly from the induction hypotheses.

Shared Abstraction. By unfolding the definitions, we need to show that for every joint distri-

bution 𝜇 ′ over J𝜏1K and J𝜏1K→ 𝐷 (J𝜏2K) such that its first marginal is an element of R𝜏1 and
its second marginal is equal to 𝛾 ← 𝜇; J𝜆𝑥 . 𝑡K (𝛾) then ((𝑥, 𝑓 ) ← 𝜇 ′; 𝑓 (𝑥)) ∈ R𝜏2. The full
proof for this case is not as straightforward as the other ones. Here we will only present

the case of when the function 𝛾 ↦→ J𝜆𝑥. 𝑡K (𝛾) is injective. By unfolding the definitions we

obtain:

(𝑥, 𝑓 ) ← 𝜇 ′; 𝑓 (𝑥)

=
∑︁
𝑎,𝑓

𝜇 ′(𝑎, 𝑓 ) 𝑓 (𝑎)

=
∑︁
𝑎,𝛾

𝜇 ′(𝑎, 𝜆𝑥 . J𝑡K (𝛾, 𝑥)) J𝑡K (𝛾, 𝑎)

The second equation is only true under the injectivity hypothesis. The induction hypothesis

for Γ, 𝑥 : 𝜏1 ⊢ 𝑡 : 𝜏2 says that for every joint distribution 𝜇 ′′ over Γ and 𝜏1 such that its

marginals are elements of RΓ and R𝜏1 , respectively, (𝛾, 𝑥) ← 𝜇 ′′; J𝑡K (𝛾, 𝑥) ∈ R𝜏2 . Consider

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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the distribution 𝜇 ′′(𝛾, 𝑎) = 𝜇 ′(𝑎, 𝜆𝑥 . J𝑡K (𝛾, 𝑥)). We can easily show that 𝜇 ′′
2
= 𝜇 ′

1
∈ R𝜏1 and

since 𝜇 ′
2
= 𝛾 ← 𝜇; J𝜆𝑥. 𝑡K (𝛾), 𝜇 ∈ RΓ and 𝛾 ↦→ J𝜆𝑥 . 𝑡K (𝛾) is injective, 𝜇 ′

2
(𝜆𝑥. J𝑡K (𝛾, 𝑥)) =

𝜇 (𝛾). By inspection, this case follows from the induction hypothesis by choosing the distri-

bution 𝜇 ′′. The full case can be found below.

Shared Application. Let 𝜇 ∈ RΓ , Γ ⊢ 𝑡 : 𝜏1 → 𝜏2 and Γ ⊢ 𝑢 : 𝜏1. We have to show that

(𝛾 ← 𝜇; (𝑓 , 𝑥) ← (J𝑡K (𝛾) ⊗ J𝑥K (𝛾)); 𝑓 (𝑥)) ∈ R𝜏2 . This follows by applying the induction

hypothesis to Γ ⊢ 𝑢 : 𝜏1 and Γ ⊢ 𝑡 : 𝜏1 → 𝜏2, where the joint distribution over J𝜏1K× (J𝜏1K→
𝐷J𝜏2K) is (𝛾 ← 𝜇; (J𝑡K (𝛾) ⊗ J𝑥K (𝛾)).

Context Modal Rules Follows directly from the induction hypothesis. □

In order for this proof to go through in the general case, we need a definition from probability

theory.

Definition A.2. Let 𝑓 : 𝐴→ 𝐷 (𝐵) and 𝜇 ∈ 𝐷 (𝐴), we define 𝑓 −1𝜇 : 𝐵 → 𝐷 (𝐴)

𝑓 −1𝜇 (𝑏, 𝑎) =
{

𝜇 (𝑎) 𝑓 (𝑎,𝑏)∑
𝑎′ 𝜇 (𝑎′) 𝑓 (𝑎′,𝑏) if

∑
𝑎′ 𝜇 (𝑎′) 𝑓 (𝑎′, 𝑏) > 0

𝜇 (𝑎) otherwise

The function above is basically a different presentation of Bayes’ theorem. At a more conceptual

level, this construction can be seen as a “weak” inverse of 𝑓 in the following sense:

Lemma A.3. Let 𝜇 : 𝐷 (𝐴) and 𝑓 : 𝐴→ 𝐷 (𝐵), then (𝑥 ← 𝜇;𝑦 ← 𝑓 (𝑥); 𝑓 −1𝜇 (𝑦)) = 𝜇.

We can now present the full proof for the shared abstraction case. Assume that the soundness

theorem holds for a program Γ, 𝑥 : 𝜏1 ⊢ 𝑡 : 𝜏2 and that 𝜇 ′ ∈ 𝐷 (J𝜏1K × (J𝜏1K → 𝐷 (J𝜏2K))) satisfies
𝜇 ′
1
∈ R𝜏1 and 𝜇 ′2 = 𝛾 ← 𝜇; J𝜆𝑥. 𝑡K (𝛾), for some 𝜇 ∈ RΓ . Furthermore, let us define 𝐹 (𝛾) = J𝜆𝑥. 𝑡K (𝛾).

In this case we can show

(𝑥, 𝑓 ) ← 𝜇 ′; 𝑓 (𝑥)

=
∑︁
𝑎,𝑓

𝜇 ′(𝑎, 𝑓 ) 𝑓 (𝑎)

=
∑︁
𝑎,𝛾

𝜇 ′(𝑎, 𝜆𝑥 . J𝑡K (𝛾, 𝑥))𝐹−1𝜇 (𝜆𝑥. J𝑡K (𝑥,𝛾), 𝛾) J𝑡K (𝑎,𝛾)

The second equation holds because for every 𝛾 ,
∑

𝑓
𝐹 (𝛾,𝑓 )∑
𝑓 𝐹 (𝛾,𝑓 ) = 1 and the only functions in the

support of 𝜇 ′
2
are of the form J𝜆𝑥 . 𝑡K (𝛾), for some 𝛾 . Finally, by applying the induction hypothesis

to Γ, 𝑥 : 𝜏1 ⊢ 𝑡 : 𝜏2 with the joint distribution 𝜇 ′′ over the context equal to ((𝑥, 𝑓 ) ← 𝜇 ′;𝛾 ←
𝐹−1𝜇 (𝑓 ); return (𝑥,𝛾). we can show by a direct calculation that its first marginal is equal to 𝜇 ′

1
∈ R𝜏1 .

In order to reason about its second marginal, consider the equalities.

𝜇 ′′
2
= (𝑥, 𝑓 ) ← 𝜇 ′;𝛾 ← 𝐹−1𝜇 (𝑓 ); return 𝛾

= (𝑥, 𝑓 ) ← 𝜇 ′; 𝐹−1𝜇 (𝑓 )
= 𝛾 ← 𝜇; 𝑓 ← 𝐹 (𝛾); 𝐹−1𝜇 (𝑓 ) = 𝜇

Furthermore, by unfolding the definitions, we can show that (𝑥,𝛾) ← 𝜇 ′′
2
; J𝑡K (𝛾, 𝑥) = (𝑥, 𝑓 ) ←

𝜇 ′; 𝑓 (𝑥) , concluding this case.

B CATEGORICAL SOUNDNESS PROOF FOR 𝜆2INI: DETAILS
B.1 Category of Models
A model for 𝜆2

INI
is given by a CD category M with distributive coproducts, a SMCC C with

weak coproducts and a lax monoidal functorM : M → C. A morphism between two models

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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case (in1𝑀) of ( |in1𝑥 ⇒ 𝑁1 | in2𝑥 ⇒ 𝑁2) ≡ 𝑁1{𝑀/𝑥}
case (in2𝑀) of ( |in1𝑥 ⇒ 𝑁1 | in2𝑥 ⇒ 𝑁2) ≡ 𝑁2{𝑀/𝑥}

case𝑁 of ( |in1𝑥 ⇒ 𝑀 | in2𝑥 ⇒ 𝑀) ≡ 𝑀{𝑁 /𝑥}

let 𝑥 = 𝑡 in 𝑥 ≡ 𝑡

let 𝑥 = 𝑥 in 𝑡 ≡ 𝑡

let 𝑦 = (let 𝑥 = 𝑀1 in𝑀2) in𝑀3 ≡ let 𝑥 = 𝑀1 in (let 𝑦 = 𝑀2 in𝑀3)

(𝜆𝑥. 𝑡) 𝑢 ≡ 𝑡{𝑢/𝑥}
(𝜆𝑥 . 𝑡 𝑥) ≡ 𝑡

let 𝑥1 ⊗ 𝑥2 = 𝑡1 ⊗ 𝑡2 in 𝑢 ≡ 𝑢{𝑡1/𝑥1}{𝑡2/𝑥2}

case (in1𝑡) of ( |in1𝑥 ⇒ 𝑢1 | in2𝑥 ⇒ 𝑢2) ≡ 𝑢1{𝑡/𝑥}
case (in2𝑡) of ( |in1𝑥 ⇒ 𝑢1 | in2𝑥 ⇒ 𝑢2) ≡ 𝑢2{𝑡/𝑥}

sample 𝑡 as 𝑥 in 𝑥 ≡ 𝑡

sample (sample 𝑡 as 𝑥 in𝑀) as 𝑦 in 𝑁 ≡ sample 𝑡 as 𝑥 in (let 𝑦 = 𝑀 in 𝑁 )

Fig. 11. (Selected Rules) Equational Theory: 𝜆2INI

(M1,C1,M1) and (M2,C2,M2) is a pair of functors (𝐹 : M1 → M2,𝐺 : C1 → C2) that preserves
the logical connectives up-to isomorphism. By defining morphism composition component-wise

and the pair (𝑖𝑑C, 𝑖𝑑M) as the identity morphism, this structure constitutes a category which we

call Mod.
In categorical treatments of type theories it is important to show that the equational theory is a

sound approximation of the categorical semantics. Most of the 𝜆2
INI

equational theory is depicted in

Figure 11. In the case of CD categories, there are some subtleties when defining their equational

theory —more details can be found in Chapter 2 of [Stein 2021]. The equational theory of symmetric

monoidal closed categories is very similar to the simply-typed case [Crole 1993]. Since the language

does not use any fancy type theoretic constructions, the soundness property is straightforward to

prove by induction on the typing derivations.

Theorem B.1. Let (C,M,M) be a 𝜆2INI model. If Γ ⊢𝑁𝐼 𝑀 ≡ 𝑁 : 𝜏 then J𝑀K = J𝑁 K and if
Γ ⊢𝐼 𝑡 ≡ 𝑢 : 𝜏 then J𝑡K = J𝑢K.

The main subtlety is that we have to be a bit more precise in the presentation of the equational

theory for the I language. Note that the sample construct can sample simultaneously from any

number of distributions, while lax monoidal functors only provide a binary sampling operator.

Formally this is resolved by restricting sample to up to two arguments and adding the following

rules to the equational theory:
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Γ𝑖 ⊢𝐼 𝑡𝑖 :M𝜏𝑖 𝑖 ∈ {1, 2, 3}
Γ1, Γ2, Γ3 ⊢𝐼 sample 𝑡1, (sample 𝑡2, 𝑡3 as 𝑥2, 𝑥3 in (𝑥2, 𝑥3)) as 𝑥1, 𝑦 in (𝑥1, 𝜋1 𝑦, 𝜋2 𝑦) ≡

sample (sample 𝑡1, 𝑡2 as 𝑥1, 𝑥2 in (𝑥1, 𝑥2)), 𝑡3 as 𝑦, 𝑥3 in (𝜋1 𝑦, 𝜋2 𝑦, 𝑥3) :M(𝜏1 × 𝜏2 × 𝜏3)

Γ ⊢𝐼 𝑡 :M𝜏

Γ ⊢𝐼 sample 𝑡, (sample _ as _ in ()) as 𝑥,𝑦 in 𝑥 ≡ 𝑡 :M𝜏

Γ ⊢𝐼 𝑡 :M𝜏

Γ ⊢𝐼 sample (sample _ as _ in ()), 𝑡 as 𝑥,𝑦 in 𝑦 ≡ 𝑡 :M𝜏

Note that even though the first rule looks intimidating, it is basically the lax monoidal com-

mutativity diagram in syntax form, which says that the sample operation is associative and, as a

consequence, there is a uniqueway of defining the𝑛-ary operation sample 𝑡1, . . . 𝑡𝑛 as𝑥1, . . . , 𝑥𝑛 in𝑀 ,

for 𝑛 ≥ 2.

An important 𝜆2
INI

model is the syntactic object Syn, which is a triple (Syn𝑙𝑖𝑛, Syn𝐶𝐷 ,M), where
Syn𝐶𝐷 is the syntactic category of CD categories with coproducts while Syn𝑙𝑖𝑛 is the syntactic

category of symmetric monoidal closed categories withweak coproducts and an applicativemodality

andM is the type constructor for the modality. Concretely each of these categories have types

as objects and morphisms are programs with one free variables modulo the equational theories

presented in Figure 11. In order for these to be considered categories each syntax must satisfy

the substitution property, which has been proved in [Azevedo de Amorim 2023] for the sum-less

version of 𝜆2
INI

, which is not hard to extend to the version with sums. Finally, it follows by a simple

inspection that Syn is a 𝜆2
INI

model.

Lemma B.2. Syn is a 𝜆2INI model.

Theorem B.3. Syn is the initial object of Mod.

Proof. Let (C,M,M) be a model. It is possible to construct a morphism J·K : Syn→ (C,M,M)
by defining two functors J·K

1
: Syn𝑙𝑖𝑛 → C and J·K

2
: Syn𝐶𝐷 → M. Since Syn𝑙𝑖𝑛 and Syn𝐶𝐷 are

freely generated, the action of the functors on objects is characterized by a simple induction on the

types. The action on morphisms is defined by induction on the typing derivation using Figure 7.

The proof that this function is well-defined follows from Theorem B.1. Uniqueness follows by

assuming the existence of two semantics and showing, by induction on the typing derivation, that

they are equal. □

B.2 Glued category
We construct the logical relations category by using a comma category. Formally, a comma

category along functors 𝐹 : C1 → D and 𝐺 : C2 → D has triples (𝐴,𝑋,ℎ) as objects, where 𝐴
is an C1 object, 𝑋 is an C2 objects and ℎ : 𝐹𝐴 → 𝐺𝑋 , and its morphisms (𝐴,𝑋,ℎ) → (𝐴′, 𝑋 ′, ℎ′)
are pairs 𝑓 : 𝐴 → 𝐴′ and 𝑔 : 𝑋 → 𝑋 ′ making certain diagrams commute. In computer science

applications of gluing, it is usually assumed that 𝐹 is the identity functor and D = Set. Furthermore,

to simplify matters, sometimes it is also assumed that we work with full subcategories of the glued

category, for instance we can assume that we only want objects such that 𝐴→ 𝐺𝐵 is an injection,

effectively representing a subset of 𝐺𝐵.

Therefore, in the setting we are interested in a glued category along a functor 𝐺 : C→ Set has
pairs (𝐴,𝑋 ⊆ 𝐺 (𝐴)) as objects and its morphisms (𝐴,𝑋 ) → (𝐵,𝑌 ) is a C morphism 𝑓 : 𝐴 → 𝐵

such that𝐺 (𝑓 ) (𝑋 ) ⊆ 𝑌 . Note that this condition can be seen as a more abstract way of phrasing the
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usual logical relations interpretation of arrow types: mapping related things to related things. At an

intuitive level we want to use the functor 𝐺 to map types to predicates satisfied by its inhabitants.

Now, we are ready to define the glued category and show that it constitutes a model for the

language. Given a triple (M,C,M) we define the triple (M,Gl(C), M̃), where the objects of Gl(C)
are pairs (𝐴 ∈ C, 𝑋 ⊆ C(𝐼 , 𝐴)) and the morphisms are C morphisms that preserve 𝑋 , i.e. we are

gluing C along the global sections functor C(𝐼 ,−). The functorM : M→ C is lifted to a functor

M̃ : C→ Gl(C). Now we have to show that the triple is indeed a model of our language.

Something that simplifies our proofs is that morphisms inGl(C) are simply morphisms in Cwith

extra structure and composition is kept the same. Therefore, once we establish that a Cmorphism is

also a Gl(C) morphism all we have to do in order to show that a certain Gl(C) diagram commutes

is to show that the respective C diagram commutes.

Theorem B.4. Gl(C) is a SMCC and weak coproducts.

Proof. Let (𝐴,𝑋 ) and (𝐵,𝑌 ) be Gl(C) objects, we define (𝐴,𝑋 ) ⊗ (𝐵,𝑌 ) = (𝐴 ⊗ 𝐵, {𝑓 : 𝐼
�−→

𝐼 ⊗ 𝐼
𝑓𝐴⊗𝑓𝐵−−−−−→ 𝐴 ⊗ 𝐵 | 𝑓𝐴 ∈ 𝑋, 𝑓𝐵 ∈ 𝑌 }); the monoidal unit is given by (𝐼 , {𝑖𝑑𝐼 }).

Let (𝐴,𝑋 ) and (𝐵,𝑌 ) be Gl(C) objects, we define (𝐴,𝑋 ) ⊸ (𝐵,𝑌 ) = (𝐴 ⊸ 𝐵, {𝑓 : 𝐼 → (𝐴 ⊸
𝐵) | ∀𝑓𝐴 ∈ 𝑋𝐴, 𝜖𝐵 ◦ (𝑓𝐴 ⊗ 𝑓 ) ∈ 𝑋𝐵}, where 𝜖𝐵 : (𝐴 ⊸ 𝐵) ⊗ 𝐴 → 𝐵 is the counit of the monoidal

closed adjunction.

To show 𝐴 ⊗ (−) ⊣ 𝐴 ⊸ (−) we can use the (co)unit characterization of adjunctions, which

corresponds to the existence of two natural transformations 𝜖𝐵 : 𝐴 ⊗ (𝐴 ⊸ 𝐵) → 𝐵 and 𝜂𝐵 : 𝐵 →
𝐴 ⊸ (𝐴⊗𝐵) such that 1𝐴⊗− = 𝜖 (𝐴⊗−) ◦ (𝐴⊗−)𝜂 and 1𝐴⊸− = (𝐴 ⊸ −)𝜖 ◦𝜂 (𝐴 ⊸ −), where 1𝐹 is

the identity natural transformation between 𝐹 and itself. By choosing these natural transformations

to be the same as in C, since the adjoint equations hold for them by definition, all we have to do is

show that they are also Gl(C) morphisms, which follows by unfolding the definitions.

Finally, we can show that Gl(C) has weak coproducts. Let (𝐴1, 𝑋1) and (𝐴2, 𝑋2) be Gl(C) objects,
we define (𝐴1, 𝑋1) ⊕ (𝐴2, 𝑋2) = (𝐴1 ⊕ 𝐴2, {ini 𝑓𝑖 | 𝑓𝑖 ∈ 𝑋𝑖 }). To show that it satisfies the (weak)

universal property of sum types. Let 𝑓1 : (𝐴1, 𝑋1) → (𝐵,𝑌 ) and 𝑓2 : (𝐴2, 𝑋2) → (𝐵,𝑌 ) be Gl(C)
morphisms. Consider the C morphism [𝑓1, 𝑓2]. We want to show that this morphism is also a Gl(C)
morphism. Consider 𝑔 ∈ 𝑋𝐴1⊕𝐴2

which, by assumption, 𝑔 = in1𝑔1 or 𝑔 = in2𝑔2. By case analysis

and the facts 𝑓𝑖 ◦ 𝑔𝑖 ∈ 𝑌 and [𝑓1, 𝑓2] ◦ in𝑖𝑔𝑖 = 𝑓𝑖 ◦ 𝑔𝑖 we can conclude that [𝑓1, 𝑓2] is indeed a Gl(C)
morphism. □

These constructions are known in the categorical logic literature [Hyland and Schalk 2003],

but since they are simple enough we think that it is helpful to also present it here. Since every

construction so far uses the same objects as the ones in C, it is possible to show that the forgetful

functor𝑈 : Gl(C) → C preserves every type constructor and is aMod morphism. Next, we have

to liftM to the glued category. This follows from general category theoretic observations.

Definition B.5. If 𝑋 is anM object then M̃(𝑋 ) = (M(𝑋 ), {𝜀;M 𝑓 | 𝑓 ∈ M(1, 𝑋 )}. Furthermore, if

𝑓 : 𝑋 → 𝑌 is anM morphism then M̃(𝑓 ) =M(𝑓 ).

Lemma B.6. The operation M̃ : M→ Gl(C) is a lax monoidal functor.

Proof. By assumption thatM is a functor, it is mostly immediate that𝑀 is a functor, we only

have to show thatM 𝑓 is a morphism in the glued category. Let 𝜀;M𝑔 be a plot in the domain of

M 𝑓 . In this case, 𝜀;M𝑔;M 𝑓 = 𝜀;M(𝑔; 𝑓 ), which implies functoriality.

In order to prove lax monoidality, it suffices to prove that the operations 𝜀 : 𝐼 → M1 and

𝜇 :M𝑋 ⊗ M𝑌 →M(𝑋 × 𝑌 ) can be lifted to the glued category, in which case lax monoidality

follows by the assumption thatM is lax monoidal. First, 𝜀 lifts to the glued category because
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Syn

(M,Gl(C), M̃) (M,C,M)

L·M
J·K

𝑈

Fig. 12. The essence of the soundness proof

𝑖𝑑𝐼 ; 𝜀 = 𝜀;M(𝑖𝑑1). Next, showing that 𝜇 lifts as well is less straightforward: it follows from the

naturality of 𝜇, the naturality of 𝐴 ⊗ 𝐼 � 𝐴 and the lax monoidal diagrams. □

Thus, the glued category is a 𝜆2
INI

model.

Theorem B.7. The triple (M,Gl(C), M̃) is a Mod object.

There is a forgetful map from the glued model to the original model.

Lemma B.8. There is aMod morphism𝑈 : (M,Gl(C), M̃) → (M,C,M).
Finally, by initiality of Syn, we can prove

Lemma B.9. There is aMod morphism L·M : Syn→ (M,Gl(C), M̃).
With this map in hand, we may now construct a functor 𝑈 ◦ L·M : Syn→ (M,C,M) which, by

initiality of Syn, is equal to the functor J·K, as illustrated by Figure 12.

B.3 General Soundness Theorem
Theorem B.10. If · ⊢𝐼 𝑡 : 𝜏 , then J𝑡K ∈ 𝑋𝜏 .

Proof. We know that J·K = 𝑈 ◦ L·M and that L𝑡M is a Gl(C) morphism. As such we have that

J𝑡K = L𝑡M = L𝑡M ◦ 𝑖𝑑𝐼 ∈ 𝑋𝜏 , since, by definition, 𝑖𝑑𝐼 ∈ 𝑋𝐼 . □

Theorem 5.3 follows immediately, as a corollary.

Corollary B.11. If · ⊢𝐼 𝑡 : M𝜏1 ⊗ M𝜏2 then J𝑡K can be factored as two morphisms J𝑡K = 𝑓1 ⊗ 𝑓2,
where 𝑓1 : 𝐼 →M J𝜏1K and 𝑓2 : 𝐼 →M J𝜏2K.

Proof. By Theorem B.10, if · ⊢𝐼 𝑡 :M𝜏1 ⊗M𝜏2, then J𝑡K ∈ 𝑋M𝜏1⊗M𝜏2 which, by unfolding the

definitions, means that there exists 𝑓1 : 𝐼 →M J𝜏1K and 𝑓2 : 𝐼 →M J𝜏2K such that J𝑡K = 𝑓1 ⊗ 𝑓2. □

B.4 Adding Base Types and Constants
Suppose that we want to add a new base type to 𝜆2

INI
and operations over it. If the type and

operation are supposed to be added to the NI layer, then this addition is as simple as giving the

type and operation a semantics in M.

If, however, we want to add a new type to the I layer then we must be careful, since besides it

being necessary to give semantics in C, it becomes necessary showing that the semantics lifts to

the glued category Gl(C). For instance, suppose that we want to add a type 𝜎 and an operation

Γ ⊢ op : 𝜎 . If there is an intended semantics J𝜎K and JopK in C we must define a predicate 𝑋𝜎

which could, for example, be equal to C(𝐼 , J𝜎K), and then we have to prove that for every 𝑝 ∈ 𝑋Γ ,

𝑝; JopK ∈ 𝑋𝜎 .

Something interesting about this approach is that the choice of 𝑋𝜎 is not unique. Consider, for

instance, in the probabilistic case, a different way to define deterministic if-statements is by adding a

constantM𝑑𝑒𝑡 (2) which is interpreted as (M(2), {𝛿0, 𝛿1}) in the glued model. Now we can soundly

add the constant if𝑑𝑒𝑡 :M𝑑𝑒𝑡 (2) ⊸ 𝜏 ⊸ 𝜏 ⊸ 𝜏 .
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C MEASURABLE SETS AND MARKOV KERNELS
A measurable space combines a set with a collection of subsets, describing the subsets that can

be assigned a well-defined measure or probability.

Definition C.1. Given a set 𝑋 , a 𝜎-algebra Σ𝑋 ⊆ P(𝑋 ) is a set of subsets such that (i) 𝑋 ∈ Σ𝑋 ,
and (ii) Σ𝑋 is closed complementation and countable union. A measurable space is a pair (𝑋, Σ𝑋 ),
where 𝑋 is a set and Σ𝑋 is a 𝜎-algebra.

A measurable function between measurable spaces (𝑋, Σ𝑋 ) and (𝑌, Σ𝑌 ) is a function 𝑓 : 𝑋 → 𝑌

such that for every 𝐴 ∈ Σ𝑌 , 𝑓
−1 (𝐴) ∈ Σ𝑋 , where 𝑓 −1 is the inverse image function. Measurable

spaces and measurable functions form a category Meas.

Definition C.2. Standard Borel spaces (𝑋, Σ𝑋 ) are spaces such that 𝑋 can be equipped with a

metric such that 𝑋 is, as a metric space, complete and separable and Σ𝑋 is the 𝜎-algebra generated

by the metric.

Example C.3. For every 𝑛 ∈ N, R𝑛
with its standard 𝜎-algebra is a standard Borel space.

Definition C.4. A probability measure is a function 𝜇𝑋 : Σ𝑋 → [0, 1] such that: (i) 𝜇 (∅) = 0, (ii)

𝜇 (𝑋 ) = 1, and 𝜇 (⊎𝐴𝑖 ) =
∑

𝑖 𝜇 (𝐴𝑖 ).

Definition C.5. A Markov kernel between measurable spaces (𝑋, Σ𝑋 ) and (𝑌, Σ𝑌 ) is a function
𝑓 : 𝑋 × Σ𝑌 → [0, 1] such that:

• For every 𝑥 ∈ 𝑋 , 𝑓 (𝑥,−) is a probability distribution.

• For every 𝐵 ∈ Σ𝑌 , 𝑓 (−, 𝐵) is a measurable function.

Markov kernels 𝑓 : 𝑋 × Σ𝑌 → [0, 1] and 𝑔 : 𝑌 × Σ𝑍 → [0, 1] can be composed with the following

formula

(𝑔 ◦ 𝑓 ) (𝑥,𝐶) =
∫

𝑔(−,𝐶)𝑑 𝑓 (𝑥,−)

The Dirac kernel 𝛿 (𝑎,𝐴) = 1 if 𝑎 ∈ 𝐴 and 0 otherwise is the unit for the composition defined

above that this structure can be organized into a category BorelStoch with standard Borel spaces

as objects and Markov kernels as morphisms.

Marginals and probabilistic independence. We will need some constructions on distributions and

measures over products.

Definition C.6. Given a distribution 𝜇 over 𝑋 × 𝑌 , its marginal 𝜇𝑋 is the distribution over 𝑋

defined by 𝜇𝑋 (𝐴) =
∫
𝑌
𝑑𝜇 (𝐴,−). Intuitively, this is the distribution obtained by sampling a pair

from 𝜇 and projecting to its first component. The other marginal 𝜇𝑌 is defined similarly.

Definition C.7. A probability measure 𝜇 over𝐴×𝐵 is probabilistically independent if it is a product
of its marginals 𝜇𝐴 and 𝜇𝐵 , i.e., 𝜇 (𝑋,𝑌 ) = 𝜇𝐴 (𝑋 ) · 𝜇𝐵 (𝑌 ), 𝑋 ∈ Σ𝐴 and 𝑌 ∈ Σ𝐵 .
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