
Classical Linear Logic in Perfect Banach Lattices
Pedro H. Azevedo de Amorim

pedro.azevedo.de.amorim@cs.ox.ac.

uk

University of Oxford

Oxford, UK

Leon Witzman

witz0001@e.ntu.edu.sg

Nanyang Technological University

Singapore, Singapore

Dexter Kozen

kozen@cs.conrnell.edu

Cornell University

Ithaca, USA

ABSTRACT
In recent years, researchers have proposed various models of

linear logic with strong connections to measure theory, with prob-
abilistic coherence spaces (PCoh) being one of the most prominent.

One of the main limitations of the PCoh model is that it cannot

interpret continuous measures. To overcome this obstacle, Ehrhard

has extended PCoh to a category of positive cones and linear Scott-

continuous functions and shown that it is a model of intuitionistic

linear logic. In this work we show that the category PBanLat1 of
perfect Banach lattices and positive linear functions of norm at

most 1 can serve the same purpose, with some added benefits. We

show that PBanLat1 is a model of classical linear logic and that

PCoh embeds fully and faithfully in PBanLat1 while preserving

the monoidal structure. Finally, we show how PBanLat1 can be

used to give semantics to a higher-order probabilistic programming

language with recursion.

1 INTRODUCTION
Probabilistic programming has enjoyed a recent resurgence of

interest due to applications in computer vision, machine learning,

and the statistical analysis of large datasets, where programs make

heavy use of probability. In order to reason about these applications

effectively, one must have a sound probabilistic interpretation of

programs.

As these use cases become more widespread, compiler engineers

and language designers are motivated to implement frameworks

that are tailor-made for probabilistic programming. In such frame-

works, it is important to equip users with an expressive set of

programming primitives that can be soundly implemented, ideally

with a specific semantics in mind.

To accomplish this task, it is first necessary to provide a denota-

tional semantics that can interpret these expressive programming

languages. This is not an easy task to achieve. A feature which is

notoriously difficult to accommodate in a probabilistic setting is

higher-order functions. In deterministic semantics, this is usually

done with cartesian closed categories. Unfortunately, the standard

measure-theoretic apparatus of probability and measure theory is

notably not cartesian closed, even when restricted to discrete spaces

[2]. This limitation has motivated the construction of quasi-Borel
spaces [23], a cartesian closed conservative extension of measurable

spaces.

Recent work has shown that linear logic has deep connections

to the semantics of probabilistic programming languages [8, 9, 11–

15, 26, 39]. By using monoidal closed categories instead of cartesian

closed categories, linear logic provides an alternative categorical

framework for higher-order functions. This was foreshadowed in

early work on probabilistic semantics [27] in which bounded linear

operators on Banach lattices were used to interpret a first-order

imperative probabilistic programming language. This can be seen

as evidence that a linear approach might be a natural alternative to

cartesian closed categories.

Since then, many probabilistically-flavored models of linear logic

have appeared. For instance, the connection between the early work

of [27] and linear logic has been recently made precise [8], where

the category of regular ordered Banach spaces and regular maps

(RoBan) was used to extend the semantics of [27] with higher-order

functions. It was shown in [8] thatRoBan is a model of intuitionistic

linear logic.

An appealing aspect of the RoBan model is that ordered Ba-

nach spaces are mathematically well-understood objects with a

well-developed classical theory, thus providing a plethora of useful

theorems to reason about programs. This is illustrated in [8] by

using results from ergodic theory to prove the correctness of a

Gibbs sampling algorithm implemented in a higher-order language.

However, the programming model supported by the semantics is

somewhat brittle, in that the soundness of the system depends on

a tricky interaction between three different type grammars with

several syntactic restrictions.

A different approach was taken in [9], in which a category PCoh
was defined and shown to be a model of classical linear logic. The

model was used to interpret a version of PCF extended with discrete

probabilities [15]. Although this category handles discrete probabil-

ities very nicely, it cannot interpret continuous distributions such

as the normal distribution over R, a severe limitation for real-world

applications. To remedy this, a category of positive cones with mea-

surability paths and linear Scott-continuous functions CLin𝑚 has

recently been introduced and shown to be a conservative extension

of the intuitionistic fragment of PCoh [13].

From a programming point of view, the language of [13] is an

extension of the simply typed 𝜆-calculus with recursion, making it a

simple and expressive programming model. However, the definition

of positive cone with measurability paths deviates from standard

objects from the probability literature and thus would require a

large amount of mathematical effort to rephrase useful theorems

that could be used to reason about programs.

Although these previous approaches are valuable contributions

to our understanding of higher-order probabilistic programming

through linear logic, missing up to now is a comprehensive model

that embodies all desirable aspects:

• extends PCoh to admit continuous measures;

• is a model of classical (not just intuitionistic) linear logic,

thus allowing it to handle other computational interpreta-

tions of linear logic such as session types;

• has a simple and expressive programming model that can

handle higher-order computation with recursion;

Pedro H. Azevedo de Amorim, Leon Witzman, and Dexter Kozen

• is based on well-understood classical structures from mea-

sure theory and functional analysis.

In this paper we propose such a model. Our model extends PCoh
with continuous probabilities and satisfies all of the properties

above. Our model is based on complete normed vector lattices,

called Banach lattices. To accommodate the second point, we work

with spaces with an involutive linear negation, the so-called perfect
spaces.

Compared to previous models, our model has simpler tensor

product and exponential constructions, which we believe lead to

a more perspicuous and theoretically satisfying generalization of

PCoh. For example, we invite a comparison with CLin𝑚 , where the

constructions rely on categorical machinery which, though elegant,

are indirect.

Most importantly, Banach lattices can be seen as an abstraction of

ordinary measure spaces and are well-studied in functional analysis,

with many results from measure theory holding for certain classes

of Banach lattices. There is a vast literature on the subject; see [17]

for a thorough introduction.

In order to justify the viability of our model, we show that it can

be used to interpret a recently introduced higher-order probabilistic

calculus [3], and we extend the core calculus of that paper with

recursion, the nonlinear modality ! and a new typing rule based on

enriched category theory.

Summary of contributions.

• In §3, we define the category PBanLat1 of perfect Banach
lattices and order-continuous positive linear operators with

norm at most 1 and show that it is a model of classical linear

logic.

• In §4, we show that there is a full and faithful monoidal

closed functor PCoh → PBanLat1. This is a more adequate

extension than the model CLin𝑚 proposed in [13], since

it also accommodates the classical aspects of the linear

structure of PCoh.
• In §5, we show that PBanLat1 is isomorphic to a category

of lattices of positive complete cones.

• In §6, we describe an extension to the calculus recently

defined in [3] and use PBanLat1 to interpret it.

Our work contributes both to the study of quantitative models

of linear logic as well as to a deeper understanding of higher-order

probability theory, shedding light on the importance of linear logic

as a vehicle to interpret higher-order programs without cartesian

closure. Furthermore, in the tradition of [8, 27], by working with

vector spaces that are deeply connected to measure theory, pow-

erful classical results can be brought to bear on the verification of

probabilistic programs.

2 RIESZ SPACES
Our model depends on technical definitions and constructions

from the vector lattice literature. This section contains a brief self-

contained presentation of the subject.We point the interested reader

to the introductory texts [1, 42] for good presentations of much of

the material presented in this section.

Although we are primarily interested in Banach lattices—normed

vector lattices with a completeness property—we start by defining

the objects in the general unnormed case.

Definition 2.1. Let R+ = {𝑎 ∈ R | 𝑎 ≥ 0}. A Riesz space is a

partially-ordered vector space (𝑉 , ≤) over R such that

• if 𝑥 ≤ 𝑦, then 𝑥 +𝑤 ≤ 𝑦 +𝑤 ;

• if 𝑥 ≤ 𝑦, then 𝛼𝑥 ≤ 𝛼𝑦 for 𝛼 ∈ R+; and
• it is an upper semilattice with respect to ≤ with join opera-

tion ∨.
It follows that the space is also a lattice with meet operation 𝑥 ∧𝑦 =

−(−𝑥 ∨ −𝑦).

Many standard vector spaces are Riesz spaces.

Example 2.2. The following are Riesz spaces:

• R𝑛 with the pointwise ordering;

• the set of bounded sequences of real numbers with point-

wise ordering;

• the set of signed measures on a measurable space;

• the set of bounded measurable functions on a measurable

space.

Unlike the real numbers, there are elements that are neither

negative nor positive, but a notable characteristic of Riesz spaces

is that every element decomposes uniquely into its positive and

negative parts.

Definition 2.3. For 𝑣 an element of a Riesz space, define 𝑣+ = 𝑣 ∨0,

𝑣− = (−𝑣) ∨ 0 and |𝑣 | = 𝑣 ∨ −𝑣 = 𝑣+ + 𝑣− .

Then 𝑣+ and 𝑣− are the unique positive elements such that

𝑣 = 𝑣+−𝑣− and 𝑣+∧𝑣− = 0. Thus Riesz spaces are completely char-

acterized by their positive elements. This often simplifies construc-

tions, as one can often prove a property for the positive elements,

then extend to the entire space using this decomposition.

Given a Riesz space𝑉 , let𝑉 +
denote the set of positive elements

of𝑉 . Using the decomposition property mentioned above, it follows

that 𝑉 = 𝑉 + − 𝑉 +
, where − applied to sets denotes elementwise

subtraction.

2.1 Order convergence
Every topology gives rise to a notion of convergence. For normed

spaces, one usually studies convergence in the norm topology. How-

ever, ordered spaces also carry an order topology.

Definition 2.4. Let 𝐷 be a directed set and 𝑉 a Riesz space. A net
{𝑣𝛼 }𝛼∈𝐷 is a function 𝐷 → 𝑉 . We say that the net is increasing

(respectively, decreasing) and write {𝑣𝛼 }↑ (respectively, {𝑣𝛼 }↓) if
𝛼 ≤𝐷 𝛽 implies 𝑣𝛼 ≤𝑉 𝑣𝛽 (respectively, 𝑣𝛼 ≥𝑉 𝑣𝛽).

Definition 2.5. Given a decreasing net {𝑥𝛼 }, we write {𝑥𝛼 } ↓ 0 if

inf{𝑥𝛼 } = 0.

Definition 2.6 (Order convergence). We say that a net {𝑥𝛼 } con-
verges in order to 𝑥 and write 𝑥𝛼 → 𝑥 if there is a decreasing net

{𝑦𝛼 } ↓ 0 such that for all 𝛼 , |𝑥𝛼 − 𝑥 | ≤ 𝑦𝛼 .

In general, this notion of convergence is neither weaker nor

stronger than convergence in norm. However, when a net converges

in both order and norm, it converges to the same value in both.

Classical Linear Logic in Perfect Banach Lattices

2.2 Riesz subspaces, solids, ideals and bands
In the theory of Riesz spaces, there are classes of subspaces

that have many interesting properties that will be used in our

constructions.

Definition 2.7. A subset 𝑆 of a Riesz space is

• solid if 𝑥 ∈ 𝑆 and |𝑦 | ≤ |𝑥 | implies 𝑦 ∈ 𝑆 ,

• an ideal if it is a solid linear subspace,

• a band if it is an ideal and closed under existing suprema.

Definition 2.8. We say that a Riesz space 𝑉 is Archimedean if for

every 𝑣 ∈ 𝑉 +
, {𝑣/𝑛}𝑛∈N ↓ 0. Furthermore, if every bounded subset

of 𝑉 admits a supremum, then we say that 𝑉 is Dedekind complete.

Proposition 2.9. Every band in a Dedekind complete Riesz space is
Dedekind complete.

Definition 2.10. A Riesz subspace 𝐴 ⊆ 𝑉 is said to be order dense
if for every element 0 < 𝑣 ∈ 𝑉 there is an element 𝑎 ∈ 𝐴 such that

0 < 𝑎 ≤ 𝑣 .

Theorem 2.11 ([1], Th. 1.34). A Riesz subspace 𝐴 is order dense in
an Archimedean Riesz space 𝑉 iff for every 𝑣 ∈ 𝑉 +,

{𝑎 ∈ 𝐴 | 0 ≤ 𝑎 ≤ 𝑣} ↑ 𝑣 .

2.3 Order-continuous functions
As usual when studying vector spaces with extra structure, we

care only about linear maps that interact nicely with the extra

structure. In our case, the linear functions will have to respect the

partial order.

We call a linear function 𝑓 : 𝑉 →𝑊 positive if it maps positive

elements of 𝑉 to positive elements of𝑊 ; that is, it restricts to a

function𝑉 + →𝑊 +
. A linear function is regular if it can be written

as the difference of two positive functions.

Definition 2.12. A linear function 𝑇 : 𝑉 →𝑊 is order-continuous
if it is continuous in the order topology. Equivalently, 𝑇 is order-
continuous if 𝑇𝑣𝛼 → 𝑇𝑣 whenever {𝑣𝛼 } is an increasing net with

supremum 𝑣 .

We can also characterize the positive order-continuous functions

as those that preserve existing suprema and infima.

Order continuity interacts well with order density. Indeed, it is

possible to show using Theorem 2.11 the following lemma

Lemma 2.13. If𝑉 is an Archimedian Riesz space and 𝑓 , 𝑔 : 𝑉 →𝑊

are two linear order-continuous functions that agree on an order-dense
subset of 𝑉 , then 𝑓 = 𝑔.

This lemma will come in handy when constructing our model.

Furthermore, the space of order-continuous linear functions on

certain Riesz spaces are well-behaved subsets of the regular linear

functions.

Theorem 2.14 ([1], Th 1.57). If𝑊 is Dedekind complete, then the
set of order-continuous linear functions𝑉 →𝑊 is a band in the space
of regular functions, thus forms a Dedekind-complete Riesz space.

Proof. The Riesz space structure is given by Th 1.18 in [1]. □

Definition 2.15. A Riesz space is separated if for every distinct

pair 𝑣1, 𝑣2 ∈ 𝑉 , there exists an order-continuous linear functional

𝑓 : 𝑉 → R such that 𝑓 (𝑣1) ≠ 𝑓 (𝑣2).

2.4 Normed Riesz spaces
Now we will introduce normed Riesz spaces. In the context of

probabilistic semantics, the norm plays an important role, as it

can be used to distinguish between arbitrary measures and (sub)-

probability distributions, the measures with norm at most 1.

Definition 2.16. Let𝑉 be a real vector space. A norm is a function

∥ · ∥ : 𝑉 → R+
such that:

• ∥𝑣 ∥ = 0 iff 𝑣 = 0

• ∥𝛼𝑣 ∥ = |𝛼 | ∥𝑣 ∥
• ∥𝑣 + 𝑢∥ ≤ ∥𝑣 ∥ + ∥𝑢∥.

For Riesz spaces, we require the norm to satisfy the additional

property

|𝑣 | ≤ |𝑢 | implies ∥𝑣 ∥ ≤ ∥𝑢∥.
If the Riesz space is also complete with respect to the norm, we

call it a Banach lattice. In vector space models of linear logic, the

norm is typically used to distinguish between the product& and the

coproduct ⊕, as they both have the same underlying set, but distinct

norms. However, in the context of program semantics, the norm

also has the extra role of allowing the interpretation of recursive

programs.

Example 2.17. The setM(R) of signed measures over the Borel

𝜎-algebra on R is a Riesz space (cf. §2.6). We can equip it with the

total variation norm

∥𝜇∥ = 𝜇+ (R) + 𝜇− (R) .

Theorem 2.14 shows that by assuming the right amount of struc-

ture on the Riesz space, the set of order-continuous linear functions

between Riesz spaces also has a lattice structure. It is not imme-

diately clear whether this result generalizes to the normed case.

Luckily, Dedekind completeness is once again enough.

Example 2.18. Let 𝑉 and 𝑊 be normed Riesz spaces with 𝑊

Dedekind complete. The set of order-continuous linear functions

𝑉 →𝑊 can be equipped with the regular norm

∥𝑇 ∥𝑟 = sup

∥𝑥 ∥𝑉 ≤1
∥|𝑇 | (𝑥)∥𝑊

where |𝑇 | is given by Theorem 2.14 and Definition 2.3.

Definition 2.19. Let 𝑉 be a normed Riesz space. The closed unit
ball of 𝑉 is the set B(𝑉) = {𝑣 ∈ 𝑉 | ∥𝑣 ∥ ≤ 1}.

2.4.1 Banach lattices. Banach lattices are normed Riesz spaces that

are also Banach spaces. In the usual categorical study of Banach

spaces, the relevant morphisms are the norm-continuous linear

functions.

Definition 2.20. A linear function 𝑓 between normed Riesz spaces

𝑉 and𝑊 is said to be norm-continuous (or norm-bounded) if
sup𝑣∈B(𝑉) ∥ 𝑓 (𝑣)∥ is finite.

Since we are interested in spaces with two distinct structures, a

partial order and a norm, it is not immediately clear which class

of morphisms one should care about. In general, the space of all

norm-continuous linear functions between Banach lattices is not

a Banach lattice, making them unable to give semantics to linear

implication.

Pedro H. Azevedo de Amorim, Leon Witzman, and Dexter Kozen

Normed Riesz spaces are also problematic, as not every order-

continuous function is norm-continuous, making it unclear how

one would equip the space of order-continuous functions with a

norm. However, if the codomain is a Banach lattice, then every

order-continuous linear function is also norm-continuous [1]. This

suggests that one should work with Banach lattices but only use

order-continuous linear functions.

Definition 2.21. The category BanLat1 has separated Banach

lattices as objects and order-continuous positive linear functions of

norm at most one as morphisms.

A subtlety when working with a norm and a partial order is that

there are two distinct notions of convergence in play that on the

surface appear only tenuously related. However, a useful property

has been identified in the literature that brings some harmony

between the two.

Definition 2.22. A normed Riesz space is said to satisfy the (se-
quential) weak Fatou property if every norm-bounded monotone

(sequence) net has a supremum.

In the context of program semantics, the sequential version of

this property has been used before to interpret recursive programs

[9, 14].

Lemma 2.23. Let 𝑓 : 𝑉 → 𝑉 be a positive order-continuous function
(not necessarily linear) such that 𝑓 (B(𝑉)) ⊆ B(𝑉). If 𝑉 satisfies the
weak Fatou property, then 𝑓 admits a fixpoint.

Proof. It can be directly shown that the limit of the 𝜔-chain

{𝑓 𝑛 (0)}𝑛∈N is a fixpoint of 𝑓 . Note that when 𝑓 is linear, the theo-

rem is trivially true, since 𝑓 (0) = 0. □

Lemma 2.24 ([17] Lem 354B(d)). Every band in a Banach lattice is
a Banach lattice.

Theorem 2.25. If𝑉 and𝑊 are Banach lattices, then the set of order-
continuous linear functions between 𝑉 and𝑊 is a Banach lattice.

Proof. The proof is a direct consequence of Banach lattices

being Dedekind complete ([17] Prop 354E(e)) and the space of order-

continuous being a band in the space of regular linear functions. □

2.5 Dualities
The category BanLat1 seems to be a good candidate in which

to interpret intuitionistic linear logic. However, since the linear

negation connective (−)⊥ is usually interpreted as the linear dual

𝑉 ⊸ R in models of linear logic based on vector spaces over R,
BanLat1 would not be able to model classical linear logic, since
there are examples of Banach lattices that are not isomorphic to

their bidual, e.g. finitely supported real sequences.

A recurring challenge in models of linear logic is to make an

involutive linear negation—typical of finite-dimensional spaces—

coexist with !𝑉 , which requires infinite-dimensional spaces. Since

we are interested in defining a model of classical linear logic, we

should only work with Riesz spaces that are isomorphic to their

bidual.

Definition 2.26. Let 𝑉𝜎 denote the space of order-continuous

functionals 𝑉 ⊸ R. A Riesz space 𝑉 is said to be perfect if the map

𝜎𝑉 = 𝜆𝑥 𝑓 . 𝑓 (𝑥) : 𝑉 ⊸ 𝑉𝜎𝜎 is an isomorphism.

We will write 𝜎 for 𝜎𝑉 when 𝑉 is clear from context.

Definition 2.27. The category PBanLat1 has perfect Banach lat-

tices as objects and positive order-continuous linear functions of

norm at most one as morphisms.

Although the definition of perfect spaces is simple, it is difficult

to manipulate in practice. The following theorems provide some

alternative characterisations, both in the normed and unnormed

cases:

Theorem 2.28 ([29], v. XIII, Th. 41.4). Let𝑉 be a separated normed
Riesz space. Then 𝑉 is perfect and Banach iff 𝑉 has the weak Fatou
property.

Theorem 2.29 ([1], Th 1.71). A Riesz space V is perfect iff
• it is separated;
• whenever 0 ≤ 𝑥𝛼↑ and sup𝛼 {𝑓 (𝑥𝛼)} < ∞ for all positive

𝑓 ∈ 𝑉𝜎 , there exists 𝑥 ∈ 𝑉 such that 0 ≤ 𝑥𝛼 ↑ 𝑥 .

Corollary 2.30. Bands of perfect Riesz spaces are also perfect.

Lemma 2.31. Every perfect Riesz space is Dedekind complete.

Proof. The proof follows from the second condition of Theo-

rem 2.29. □

Lemma 2.32. Every Riesz space of the form 𝑉𝜎 is perfect.

Proof. To show the first point of Theorem 2.29, assume that

𝑓1 ≠ 𝑓2 ∈ 𝑉𝜎 . Then there is 𝑣 ∈ 𝑉 such that 𝑓1 (𝑣) ≠ 𝑓2 (𝑣).
Using the fact that 𝜆𝑓 . 𝑓 (𝑣) is an element of 𝑉𝜎𝜎 , we can con-

clude that 𝑉𝜎 is separated. For the second point, let us assume that

0 ≤ {𝑓𝛼 }↑ and that for all 𝐹 ∈ 𝑉𝜎𝜎 , if 𝐹 ≥ 0, then sup𝛼 𝐹 (𝑓𝛼) < ∞.

From this hypothesis, it follows that for all 𝑣 ∈ 𝑉 , if 𝑣 ≥ 0, then

sup𝛼 𝑓𝛼 (𝑣) = sup𝛼 𝜎 (𝑥) (𝑓𝛼) < ∞. This means that the function

𝑓 (𝑥) = sup𝛼 𝑓𝛼 (𝑥) is well-defined, linear, and order-continuous. By
Lemma 1.18 in [1], 𝑉𝜎 is Dedekind complete and 𝑓 bounds 𝑓𝛼 . □

An interesting fact that is not obvious from the definitions is

that the bidual of Riesz spaces can be seen as a sort of completion

procedure.

Lemma 2.33 ([1], Th. 1.70). Let 𝑉 be an Archimedean Riesz space.
The set 𝜎 (𝑉) is an order-dense Riesz subspace of 𝑉𝜎𝜎 .

It is possible to categorify the theorem above by showing that

(−)𝜎𝜎 is a functor from a category of Riesz spaces and order-

continuous linear functions to a category of perfect Riesz spaces

with the same morphisms. This functor is defined analogously

to the continuation monad from the theory of programming lan-

guages. Furthermore, there is an obvious forgetful functor𝑈 : 𝑈 :

PBanLat1 → BanLat1.

Theorem 2.34. The functor (−)𝜎𝜎 : BanLat1 → PBanLat1 is left
adjoint to the forgetful functor𝑈 .

Proof. We observe that if 𝑓 : 𝑉 ⊸𝑊 , then 𝜎−1 ◦ 𝑓 𝜎𝜎 : 𝑉𝜎𝜎 ⊸
𝑊 . In the other direction, if we have a function 𝑓 : 𝑉𝜎𝜎 ⊸𝑊 , we

can consider its restriction 𝑓 ↾ 𝑉 : 𝑉 ⊸ 𝑊 . To show that these

operations are inverses, we use Theorem 2.11 and Theorem 2.33,

which allow us to show that if two order-continuous functions

agree on 𝜎 (𝑉), then they agree everywhere. □

Classical Linear Logic in Perfect Banach Lattices

Lemma 2.35. If 𝑉 is a separated Riesz space, then the function
𝜎 : 𝑉 ⊸ 𝑉𝜎𝜎 is injective.

The theorem and lemma above are useful because they imply

that if 𝑉 is a separated Riesz space and𝑊 is a perfect Riesz space,

then every order-continuous linear function 𝑓 : 𝑉 ⊸𝑊 extends

uniquely to a function 𝑉𝜎𝜎 ⊸𝑊 .

Remark 2.36. It might possible to define a semantics for an ex-

pressive probabilistic programming language using only 𝜎-perfect

Riesz spaces, those that are isomorphic to their sequential bidual. If

that is the case, it would be necessary to have a theorem analogous

to Theorem 2.29.

The separability condition would need to be kept to guarantee

injectivity, but the other conditions require further investigation,

which we leave to future work.

2.6 Signed measures as Riesz spaces
Measures are usually defined as countably additive, nonnegative

real-valued functions on a 𝜎-algebra. Signed measures provide a
slight generalization by dropping the requirement of nonnegativity.

Definition 2.37. Let (𝑋, Σ) be a measurable space. A signed mea-
sure is a function 𝜇 : Σ → R such that 𝜇 (∅) = 0 and 𝜇 (⋃

𝑖∈N
𝐴𝑖) =∑

𝑖∈N
𝜇 (𝐴𝑖) for disjoint sets (𝐴𝑖)𝑖∈N.

An important difference between ordinary measures and signed

measures is that signed measures come equipped with a natural

vector space structure. Indeed, it can be shown that signedmeasures

are perfect Riesz spaces.

Lemma 2.38. Let (𝑋, Σ) be a measurable space. The spaceM(𝑋, Σ)
of signed measures is a normed Riesz space.

Proof. The vector space structure is defined pointwise with

lattice structure defined by 𝜇 ∨ 𝜈 = (𝜇 − 𝜈)+ + 𝜈 using the Hahn-

Jordan decomposition and the norm is the total-variation norm. □

When a measure 𝜇 is positive, its total variation norm is its total

mass 𝜇 (𝑋).

Theorem2.39. Let (𝑋, Σ) be ameasurable space. The spaceM(𝑋, Σ)
of signed measures with the total variation norm is a perfect Banach
lattice.

Proof. The proof follows by applying Theorem 2.28, the lemma

above and observing that since the order of measures is given

pointwise, you can define their suprema pointwise as well. □

3 MODELS OF LINEAR LOGIC
The categorical semantics of linear logic is very well understood;

see Mellies [31] for an overview. In this section, we show that

PBanLat1 is a model of classical linear logic.

3.1 Symmetric Monoidal Closed Structure
In order for PBanLat1 to interpret the multiplicative fragment of

linear logic, i.e. give semantics to a linear 𝜆-calculus with tensors,

it must be a symmetric monoidal closed category. Concretely, it

needs amonoidal product ⊗ such that for every object𝐴, the functor

𝐴 ⊗ − has a right adjoint 𝐴 ⊸ −, known as linear implication.

For models based on vector spaces, the monoidal product is

typically given by the tensor product. For such models, linear im-

plication has a natural interpretation in terms of linear functions.

Furthermore, since our spaces are perfect, we have an involutive

linear negation 𝐴⊥
defined as the space 𝐴 ⊸ R, and, in models of

classical linear logic, the equation𝐴 ⊗ 𝐵 = (𝐴 ⊸ 𝐵⊥)⊥ holds. Thus

the tensor product ⊗ can be defined in terms of linear implication

⊸ and negation
⊥
in such models.

Note that this circumvents one of the main complications with

the model of [13], where the existence of a suitable monoidal prod-

uct is established non-constructively using a categorical density

argument.

3.1.1 Internal Homs. Since the category PBanLat1 has order-continuous
linear functions with norm at most 1 as morphisms, it makes sense

to define the internal hom object 𝑉 ⊸ 𝑊 as the space of order-

continuous linear functions between perfect Banach lattices 𝑉 and

𝑊 . This definition is justified by the following theorem.

Lemma 3.1. If 𝑉 and𝑊 are perfect Riesz spaces, then the set of
order continuous linear functions 𝑉 ⊸𝑊 is a perfect Riesz space.

Proof. ByTheorem 2.14,𝑉 ⊸𝑊 is a Riesz space. Applying The-

orem 2.29, we can also show that it is perfect. To show separability,

let 𝑓1, 𝑓2 : 𝑉 ⊸𝑊 be distinct functions. Then there is a point 𝑣 ∈ 𝑉

such that 𝑓1 (𝑣) ≠ 𝑓2 (𝑣). Since𝑊 is perfect, it is separated, therefore

there exists 𝑔 : 𝑊 ⊸ R such that 𝑔(𝑓1 (𝑣)) ≠ 𝑔(𝑓2 (𝑣)). Then the

order-continuous function 𝜆𝑓 .𝑔(𝑓 (𝑣)) separates the points 𝑓1 and
𝑓2, therefore 𝑉 ⊸𝑊 is separated.

Now let 0 ≤ {𝑓𝛼 }↑ be an increasing net such that sup𝛼 𝐹 (𝑓𝛼) <
∞ for all positive 𝐹 : (𝑉 ⊸ 𝑊) ⊸ R. We can define an 𝑓 such

that 𝑓𝛼 ↑ 𝑓 pointwise. Let 𝑣 ∈ 𝑉 +
and let 𝐹 :𝑊 ⊸ R be a positive

functional. Consider the functional 𝜆𝑓 . 𝐹 (𝑓 (𝑣)) : (𝑉 ⊸𝑊) ⊸ R.
By hypothesis, sup𝛼 (𝐹 (𝑓𝛼 (𝑣))) < ∞, and since𝑊 is perfect and

{𝑓𝛼 (𝑣)} is a positive net in𝑊 , there exists 𝑓 (𝑣) ∈ 𝑊 such that

𝑓𝛼 (𝑣) ↑ 𝑓 (𝑣). This defines 𝑓 on elements of 𝑉 +
, and for arbitrary

𝑣 ∈ 𝑉 we take 𝑓 (𝑣) = 𝑓 (𝑣+) − 𝑓 (𝑣−). Then sup𝛼 𝑓𝛼 = 𝑓 . □

From Lemma 2.25 and the theorem above, it follows that if 𝑉

and𝑊 are perfect Banach lattices, then so is 𝑉 ⊸ 𝑊 . By using

standard techniques from the literature on vector models of linear

logic, we have

Theorem 3.2. The operation ⊸ : PBanLat1𝑜𝑝 × PBanLat1 →
PBanLat1 is functorial.

3.1.2 Monoidal structure. As mentioned above, the monoidal struc-

ture on vector space models of linear logic is usually defined as

a tensor product, and monoidal closure is obtained from the uni-

versal property of tensor products. The usual recipe for defining

tensor products is to use a free construction modulo the tensor prod-

uct equations. When working with infinite-dimensional spaces, a

completion procedure may be required as well.

Indeed, this is the approach taken in [16], in which a tensor

product is defined for perfect Riesz spaces via a more traditional

construction using the completion of the algebraic tensor product.

It is also shown in [16] that 𝑉 ⊗𝑊 � (𝑉 ⊸𝑊 ⊥)⊥, meaning that

their construction is isomorphic to ours.

In contrast, our construction starts with the definition 𝑉 ⊗𝑊 ≜
(𝑉 ⊸𝑊 𝜎)𝜎 , as required by the laws of linear logic. We then show

Pedro H. Azevedo de Amorim, Leon Witzman, and Dexter Kozen

that it satisfies the expected universal property of tensor products:

𝑉 ⊗𝑊

𝑉 ×𝑊 𝑌

∃!𝑓
𝜑

∀𝑓

(3.1)

where 𝜑 and 𝑓 are bilinear functions. We show this using the fact

that the internal hom can be used to classify bilinear functions

using 𝑉 ⊸ (𝑊 ⊸ 𝑌), then showing that this space is isomorphic

to 𝑉 ⊗𝑊 ⊸ 𝑌 .

Lemma 3.3. 𝑉 ⊗𝑊 ⊸ 𝑌 � 𝑉 ⊸𝑊 ⊸ 𝑌 .

Proof. Recall that if 𝑉 and𝑊 are perfect Riesz spaces, then

𝑉 ⊸𝑊 �𝑊 𝜎 ⊸ 𝑉𝜎 . Then

𝑉 ⊗𝑊 ⊸ 𝑌 = (𝑉 ⊸𝑊 𝜎)𝜎 ⊸ 𝑌

� 𝑌𝜎 ⊸ (𝑉 ⊸𝑊 𝜎) � 𝑉 ⊸ 𝑌𝜎 ⊸𝑊 𝜎

� 𝑉 ⊸𝑊 ⊸ 𝑌 . □

Theorem 3.4. 𝑉 ⊗𝑊 , defined as (𝑉 ⊸𝑊 𝜎)𝜎 , satisfies the universal
property of tensor products (3.1).

Proof. Observe that the set of (norm bounded) bilinear order-

continuous functions 𝑉 ×𝑊 → 𝑌 is (isometrically, in the normed

case) isomorphic to 𝑉 ⊸ 𝑊 ⊸ 𝑌 . Restating the diagram (3.1) in

this language, we must show that 𝑉 ⊗𝑊 ⊸ 𝑌 � 𝑉 ⊸ 𝑊 ⊸ 𝑌 .

This is exactly Lemma 3.3. □

Using the universal property (3.1) and the (easy to prove) facts

that 𝑉 ⊗ (𝑊 ⊗ 𝑌) � (𝑉 ⊗𝑊) ⊗ 𝑌 and 𝑉 ⊗𝑊 � 𝑊 ⊗ 𝑉 , we can

conclude:

Theorem 3.5. PBanLat1 is a symmetric monoidal closed category.

It is difficult in general to give an intuitive characterization of

the elements of a tensor product. This is also the case with our

construction. Nevertheless, in the context of measures, we can give

some intuition for the elements ofM(𝐴) ⊗M(𝐵). Let 𝜇𝐴 and 𝜇𝐵 be

probability distributions onmeasurable spaces𝐴 and 𝐵, respectively.

The product distribution 𝜇𝐴⊗𝜇𝐵 is the joint probability distribution

on 𝐴 × 𝐵 with marginals 𝜇𝐴 and 𝜇𝐵 obtained by sampling 𝜇𝐴 and

𝜇𝐵 independently. This is an element of M(𝐴) ⊗ M(𝐵), but there
are also other joint distributions in M(𝐴) ⊗ M(𝐵) that do not

represent independent samples. For example, let 𝐴 = 𝐵 = {0, 1}
and consider the joint distribution

1

2
(𝛿0 ⊗ 𝛿0 + 𝛿1 ⊗ 𝛿1). Sampling

this distribution returns (0, 0) or (1, 1), each with probability 1/2,
so the two components are clearly not independent.

In general, not every joint distribution is an element of the tensor

product, as explained in [8]. From a programming point of view, the

universal property of tensor products says that the behavior of a

program taking inputs of typeM(𝐴) ⊗M(𝐵) is fully characterized
by its behavior on inputs that are independent distributions over 𝐴

and 𝐵.

3.2 ∗-autonomous categories
Classical linear logic differs from its intuitionistic variant by

requiring that linear negation be involutive, that is, 𝐴⊥⊥ = 𝐴 for

every formula 𝐴. Categorically, this is modeled by ∗-autonomous
categories, symmetric monoidal closed categories C with a functor

(−)∗ : Cop → C such that every object𝐴 is naturally isomorphic to

𝐴∗∗
and for every three objects 𝐴, 𝐵, 𝐶 , there is a natural bijection

Hom(𝐴⊗𝐵,𝐶∗) � Hom(𝐴, (𝐵⊗𝐶)∗). Equivalently, a ∗-autonomous

category is a symmetric monoidal closed category C equipped

with a dualizing object ⊥ such that for every object 𝐴, the unit

𝜕𝐴 : 𝐴 → (𝐴 ⊸ ⊥) ⊸ ⊥ is an isomorphism.

In our case, the dualizing object isR, the unit is the linear function
𝜎𝑉 : 𝑉 → 𝑉𝜎𝜎 , and the isomorphism holds by assumption.

Theorem 3.6. PBanLat1 is a ∗-autonomous category.

3.3 Cartesian and co-Cartesian structure
Cartesian and co-Cartesian structure are useful in the formation

of product and sum types. In models of linear logic, these are rep-

resented by linear conjunction & and disjunction ⊕, respectively.
In PBanLat1, both operations have 𝑉 ×𝑊 as their underlying set

with lattice operations defined componentwise. In the normed case,

we can distinguish them by choosing different norms.

Definition 3.7. Let 𝑉 and𝑊 be normed Riesz spaces. We define

• the product𝑉&𝑊 = (𝑉×𝑊, ∥−∥sum), where ∥(𝑣,𝑤)∥sum =

∥𝑣 ∥ + ∥𝑤 ∥.
• the coproduct𝑉⊕𝑊 = (𝑉×𝑊, ∥−∥max), where ∥(𝑣,𝑤)∥max =

max(∥𝑣 ∥, ∥𝑤 ∥).

Since convergence for both is defined componentwise, by using

Theorem 2.28 we can show that if𝑉 and𝑊 are perfect and Banach,

then𝑉 &𝑊 and𝑉 ⊕𝑊 are as well. The unit ⊤ for the product and

0 for the coproduct are both the trivial Riesz space {0}.

Theorem 3.8. PBanLat1 is (co-)Cartesian.

3.4 Exponentials
The trickiest part in definingmodels of linear logic is interpreting

the exponential modality !, which can be used as a type construc-

tor in a linear programming language that allows variables to be

reused and discarded. In particular, this modality recovers the ex-

pressive power of the simply-typed 𝜆-calculus and, in the context

of probabilistic models of linear logic, it allows distributions to be

resampled. Before we present its formal construction, we will give

some intuition behind it.

In many concrete models, the construction of !𝑉 captures the

idea that its elements are those of the form 𝑉 ⊗𝑛
for 𝑛 ≥ 0. This

intuition also holds for vector space models, with the additional

requirement that it must also accommodate a vector space structure.

Categorically, such amodality is captured by amonoidal comonad

! equipped with operations that model the structural rules of con-
traction and weakening.

Definition 3.9. An exponential in a categorical model of linear

logic is a comonad (!, 𝜀, 𝜌), where 𝜀𝐴 : !𝐴 ⊸ 𝐴 and 𝜌𝐴 : !𝐴 ⊸ ‼𝐴,

such that every object !𝐴 carries a commutative comonoid structure

(!𝐴,𝑑𝐴 : !𝐴 → !𝐴 ⊗ !𝐴, 𝑒𝐴 : !𝐴 → 1),

or, alternatively, it satisfies the Seely isomorphisms !(𝐴 & 𝐵) �
!𝐴 ⊗ !𝐵 and !⊤ � 1.

Our construction is inspired by [26]. Let 𝑉 be a perfect Banach

lattice and consider bounded functions 𝑓 : B(𝑉)+ → R that can

Classical Linear Logic in Perfect Banach Lattices

be written as an infinite sum of 𝑛-linear positive order-continuous

functions, also known as power series:

𝑓 (𝑥) =
∞∑︁
𝑛=0

𝑓𝑛 (𝑥, . . . , 𝑥). (3.2)

Since the functions 𝑓𝑛 are positive and so are their arguments,

𝑓 converges absolutely on all of B(𝑉)+. It is also clear that 𝑓 is

monotone and order-continuous, as each of the 𝑓𝑛 are so. By taking

the formal difference of positive power series, we obtain a vec-

tor space. Furthermore, this vector space can be equipped with a

normed Riesz space structure which we call 𝑆 (𝑉 ;R), where the

order structure is given pointwise.

Lemma 3.10. If 𝑉 is a perfect Banach lattice and 𝑣 ∈ B(𝑉)+, the
Dirac distribution 𝛿𝑣 ∈ 𝑆 (𝑉 ;R)𝜎 , where 𝛿𝑣 (𝐹) = 𝐹 (𝑣).

Proof. The linearity of 𝛿𝑣 is immediate and in order to prove its

order continuity, let {(𝑓0,𝛼 , 𝑓1,𝛼 , . . .)}𝛼 ↑ (𝑓0, 𝑓1, · · ·) be an ascend-

ing net in 𝑆 (𝑉 ;R). Without loss of generality, we may assume that

this net is contained in the positive unit ball of 𝑆 (𝑉 ;R). For every
natural number𝑛, sup𝛼 (

∑𝑛
0
𝑓𝑖,𝛼 (𝑣)) =

∑𝑛
0
(sup𝛼 (𝑓𝑖,𝛼 (𝑣))), by order-

continuity of addition. From this we can conclude sup𝛼 (𝛿𝑣 (𝑓𝛼)) ↑
𝛿𝑣 (𝑓). □

We will define !𝑉 to be the “smallest” perfect Banach lattice

which is contained in 𝑆 (𝑉 ;R)𝜎 and contains the Dirac distributions.

Such a space exists since, 𝑆 (𝑉 ;R)𝜎 is perfect and Banach, and these

properties are close under arbitrary intersection. In the rest of the

section we will make the construction precise.

Free Riesz spaces. There has been much work done on free con-

structions for partially ordered vector spaces. We are interested

in the construction of [41] showing that every partially ordered

vector space can be extended to a Riesz space.

Theorem 3.11 ([41], Th 3.5). Let 𝐴 be a partially ordered vector
space. There is a Riesz space �̃� and an order-continuous bipositive1

inclusion function 𝜄 : 𝐴 → �̃� such that the image of 𝜄 is order-dense
in �̃�.

Furthermore, there is an analogue of this construction for normed

Riesz spaces.

Lemma 3.12. Let 𝐴 be a partially ordered normed vector space, 𝑉
an Archimedean normed Riesz space, and𝑊 a perfect Banach lattice.
If 𝐴 ⊆ 𝑉 is order-dense, then every positive order-continuous linear
function 𝑓 : 𝐴 → 𝑊 with norm at most 1 extends uniquely to an
order-continous linear function on 𝑉 .

Proof. By order density, one can define
˜𝑓 (𝑣) = sup{𝑓 (𝑎) | 𝑎 ≤

𝑣}. It follows from Theorem 2.28 that the supremum is well-defined.

The proposed extension is linear because both addition and scalar

multiplication are order-continuous. Furthermore, the extension is

order-continuous:

sup

𝛼

˜𝑓 (𝑣𝛼) = sup

𝛼
sup

𝛽

𝑓 (𝑣𝛼,𝛽) = sup

𝛽

𝑓 (sup
𝛼

𝑣𝛼) = ˜𝑓 (sup
𝛼

𝑣𝛼) □

1
that is, preserves and reflects the poset structure, which implies injectivity, since

𝑓 (𝑣1) ≤ 𝑓 (𝑣2) and 𝑓 (𝑣2) ≤ 𝑓 (𝑣1) implies 𝑣1 = 𝑣2 .

Lemma 3.13 ([5], Lem 5.3). If 𝑣1, . . . , 𝑣𝑛 ∈ B(𝑉)+ are distinct
vectors, then the distributions 𝛿𝑣1 , . . . , 𝛿𝑣𝑛 are linearly independent.

Let Δ(𝑉) be the normed Riesz space generated by the partially or-

dered vector space spanned by {𝛿𝑣}𝑣∈B(𝑉)+ according to Theorem

3.11.

Lemma3.14. The spaceΔ(𝑉) embeds as a Riesz subspace of 𝑆 (𝑉 ;R)𝜎 .
Thus it is Archimedean.

Proof. This is a direct consequence of Corollary 3.10 from [41]

and the fact that 𝑆 (𝑉 ;R)𝜎 is Archimedean. □

Lemma 3.15. Let 𝑉 be a perfect Banach lattice and 𝑣 ∈ B(𝑉)+.
• 𝑣 ≤ 𝑣 ′ if, and only if, 𝛿𝑣 ≤ 𝛿𝑣′

• {𝑣𝛼 }𝛼 ↑ 𝑣 if, and only if {𝛿𝑣𝛼 }𝛼 ↑ 𝛿𝑣

Proof. We begin with the forwards direction. Let {𝑣𝛼 }𝛼 ⊂
B(𝑉)+ be an ascending chain of positive elements, which by the

weak Fatou property converges to an element of B(𝑉)+. We want

to show that 𝛿 (sup𝛼 𝑣𝛼) = sup𝛼 𝛿 (𝑣𝛼). We have the following equa-

tions

𝛿 (sup
𝛼

𝑣𝛼) (𝑓) = 𝑓 (sup
𝛼

𝑣𝛼) = sup

𝛼
𝑓 (𝑣𝛼) = sup

𝛼
𝛿 (𝑣𝛼) (𝑓).

The second equation holds because 𝑓 is order-continuous.

In order to provemonotonicity, we use the fact that every positive

power series is the sum of positive n-linear functions, therefore

𝑣 ≤ 𝑣 ′ ⇒ 𝛿 (𝑣) (
∑︁
𝑖

𝑓𝑖) =
∑︁
𝑖

𝑓𝑖 (𝑣, . . . 𝑣) ≤∑︁
𝑖

𝑓𝑖 (𝑣 ′, . . . 𝑣 ′) = 𝛿 (𝑣 ′) (
∑︁
𝑖

𝑓𝑖).

The other direction follows from observing that since, by as-

sumption, the objects of PBanLat1 are perfect, we can recover

a lot of information about 𝑉 by restricting the domain of 𝛿𝑣 to

the linear functionals 𝑉𝜎 . Therefore, for every positive 𝑓 : 𝑉𝜎 ,

𝑓 (𝑣) ≤ 𝑓 (𝑣 ′), which implies 𝜎 (𝑣) ≤ 𝜎 (𝑣 ′), where 𝜎 : 𝑉 → 𝑉𝜎𝜎

is the isomorphism. Since 𝜎 preserves the lattice structure of 𝑉 ,

𝑣 ≤ 𝑣 ′. From a similar argument, assuming that {𝑣𝛼 }𝛼 ↑ 𝑣 it follows
that {𝜎 (𝑣𝛼)}𝛼 ↑ 𝜎 (𝑣), which concludes the proof by the second

point of Theorem 2.29. □

Corollary 3.16. The function 𝛿 : B(𝑉)+ → B(!𝑉)+ is Scott contin-
uous.

Closure under suprema. Now we have a normed Riesz space

which is a subset of 𝑆 (𝑉 ;R)𝜎 , but it is not necessarily perfect or

Banach. In order get both of these properties, we will use Theo-

rem 2.28. We restrict Δ(𝑉) to its positive unit ball and, by transfinite
induction, we add to it all of the suprema of directed sets, and gen-

erate the whole space by first generating the positive cone from

the positive unit ball and from it, and then taking differences of

elements. We call this space !𝑉 .

Definition 3.17. Let 𝑌 be a CPO and 𝑋 ⊆ 𝑌 a poset with the

same partial order relation as Y. Let 𝑂𝑟𝑑 be the class of ordinals

and define by transfinite induction the family of partial orders𝑇 (𝛼)

Pedro H. Azevedo de Amorim, Leon Witzman, and Dexter Kozen

parametrized by ordinals.

𝑇 : 𝑂𝑟𝑑 → Set

𝑇 (0) = 𝑋

𝑇 (𝛼 + 1) = {sup{𝑥𝛽 }𝛽 : 𝑌 | {𝑥𝛽 } ⊆ 𝑇 (𝛼)}

𝑇 (
∨
𝛽<𝛼

𝛽) =
⋃
𝛽<𝛼

𝑇 (𝛽).

There is a smallest ordinal 𝛼0 such that 𝑇 (𝛼0 + 1) = 𝑇 (𝛼0). We

denote 𝑇 (𝛼0) as 𝑋𝐶𝑃𝑂 .

Lemma 3.18. The partial order 𝑋𝐶𝑃𝑂 is a CPO.

Proof. Let {𝑥𝛼 } be a directed set. By assumption, it has a supre-

mum in 𝑌 and it is an element of 𝑇 (𝛼0 + 1), which concludes the

proof, since 𝑇 (𝛼0) = 𝑇 (𝛼0 + 1). □

In our case, we choose 𝑌 to be the positive unit ball of 𝑆 (𝑉 ;R)𝜎
and 𝑋 to be the positive unit ball of Δ(𝑉). It follows by transfinite

induction and order-continuity of the Riesz space structure, that

for every ordinal 𝛼 , 𝑇 (𝛼) is the positive unit ball of a normed Riesz

space embedded in 𝑆 (𝑉 ;R)𝜎 . We define !𝑉 to be the perfect Banach

lattice generated by the positive unit ball Δ(𝑉)𝐶𝑃𝑂 .

Lemma 3.19. Let 𝑉 be a normed Riesz space and 𝑉 ′,𝑊 perfect
Banach lattices, such that𝑉 ⊆ 𝑉 ′. Every monotonic order-continuous
function 𝑓 : B(𝑉)+ → B(𝑊)+ can be extended uniquely to a mono-
tonic order continuous function 𝑓 ∗ : (B𝑉)+

𝐶𝑃𝑂
→ B(𝑊)+.

Furthermore, if 𝑓 preserves sub-convex combinations2, then 𝑓 ∗ can
be further extended to a positive linear order-continuous function
˜𝑓 : (𝑉𝐶𝑃𝑂 − 𝑉𝐶𝑃𝑂) → 𝑊 , where (𝑉𝐶𝑃𝑂 − 𝑉𝐶𝑃𝑂) is the perfect
Banach lattice generated by the positive unit ball 𝑉𝐶𝑃𝑂 .

Proof. By transfinite induction on the structure of 𝑉𝐶𝑃𝑂 , the

extension 𝑓 ∗ on a point 𝑣 which is the supremum of a directed

set {𝑣𝛼 }𝛼 , can be defined as sup{𝑓 ∗ (𝑣𝛼)}𝛼 . By monotonicity of 𝑓

and the weak Fatou property of𝑊 , such supremum is well-defined.

However, a priori, a distinct directed set {𝑣 ′
𝛼 ′ }𝛼 ′ with supremum 𝑣

might give a different sup{𝑓 (𝑣 ′
𝛼 ′)}𝛼 ′ .

We show that this is not the case by considering the directed

set {𝑣𝛼 ∧ 𝑣 ′
𝛼 ′ }𝛼,𝛼 ′ . By order continuity of ∧, its supremum is 𝑣 ,

and since 𝑣𝛼 ∧ 𝑣 ′
𝛼 ′ ≤ 𝑣𝛼 , sup{𝑓 (𝑣𝛼 ∧ 𝑣 ′

𝛼 ′)}𝛼,𝛼 ′ ≤ sup{𝑓 (𝑣𝛼)}𝛼 . To
show the other direction, note that since the supremum of 𝑣𝛼 ∧ 𝑣 ′

𝛼 ′

is 𝑣 , for every 𝛼0, there are 𝛼, 𝛼 ′ such that 𝑣𝛼0 ≤ 𝑣𝛼 ∧ 𝑣 ′
𝛼 ′ , by

monotonicity, this allows us to show sup{𝑓 (𝑣𝛼)}𝛼 ≤ sup{𝑓 (𝑣𝛼 ∧
𝑣 ′
𝛼 ′)}𝛼,𝛼 ′ , therefore

sup{𝑓 (𝑣𝛼)}𝛼 = sup{𝑓 (𝑣𝛼 ∧ 𝑣 ′𝛼 ′)}𝛼,𝛼 ′ = sup{𝑓 (𝑣 ′𝛼 ′)}𝛼 ′

Both uniqueness and order continuity of 𝑓 ∗ follow by construction

and from order continuity of 𝑓 .

If 𝑓 also preserves sub-convex combinations, this also means

that for 0 ≤ 𝛼 ≤ 1, 𝑓 (𝛼𝑥) = 𝛼 𝑓 (𝑥). With this in mind, we define

˜𝑓 (𝑥) = ∥𝑥 ∥ ˜𝑓 (𝑥
∥𝑥 ∥), when 𝑥 > 0. By linearity, this definition can

be directly extended to non-positive elements as well. Therefore,

2 𝑓 (𝛼𝑥 + 𝛽𝑦) = 𝛼 𝑓 (𝑥) + 𝛽 𝑓 (𝑦) , 0 ≤ 𝛼 + 𝛽 ≤ 1

assuming without loss of generality that 𝑥,𝑦 > 0,

˜𝑓 (𝑥 + 𝑦) = ∥𝑥 + 𝑦∥ 𝑓
(
𝑥 + 𝑦
∥𝑥 + 𝑦∥

)
=

∥𝑥 + 𝑦∥
(
𝑓

(
𝑥

∥𝑥 + 𝑦∥

)
+ 𝑓

(
𝑦

∥𝑥 + 𝑦∥

))
∥𝑥 + 𝑦∥

(
𝑓

(
∥𝑥 ∥𝑥

∥𝑥 ∥∥𝑥 + 𝑦∥

)
+ 𝑓

(
∥𝑦∥𝑦

∥𝑦∥∥𝑥 + 𝑦∥

))
=

∥𝑥 ∥ 𝑓
(
𝑥

∥𝑥 ∥

)
+ ∥𝑦∥ 𝑓

(
𝑦

∥𝑦∥

)
= ˜𝑓 (𝑥) + ˜𝑓 (𝑦) .

The same proof strategy can be used for proving
˜𝑓 (𝛼𝑥) = 𝛼 ˜𝑓 (𝑥)

for any 𝛼 ∈ R. □

Note that the proof above is less direct than that of Lemma 3.12

because that lemma has the simplifying hypothesis that the sub-

space is order dense, which is not the case here.

Lemma 3.20. The space !𝑉 is a perfect Banach lattice.

Proof. By applying Theorem 2.28, it suffices to show that its

positive unit ball is a CPO and that it is a normed Riesz space.

Completeness follows from Lemma 3.18. In order to show that !𝑉

is a normed Riesz space, we equip it with the same structure as the

host space 𝑆 (𝑉 ;R)𝜎 . Order continuity of the Riesz space structure

is the property that guarantees that !𝑉 is closed under addition,

multiplication by scalar, and the lattice operations. □

Lemma 3.21. Let𝑉 be a normed Riesz space and𝑊 a perfect Banach
lattice. If 𝑓 : Δ(𝑉) → 𝑊 is an order continuous positive linear
function with norm at most 1, then it extends uniquely to the entire
space !𝑉 . Furthemore, if two functions 𝑓1, 𝑓2 : !𝑉 →𝑊 agree on every
point 𝛿𝑣 , they are equal.

Proof. This follows by application of Lemmas 3.12 and 3.19. □

The lemma above tells us that in order to define a morphism

over !𝑉 it suffices to define it over Δ(𝑉), which in turn means that

it suffices to define it over the Dirac distributions 𝛿𝑣 . We can now

proceed to show that ! is indeed a linear logic exponential.

Theorem 3.22. The mapping 𝑉 ↦→ !𝑉 is functorial.

Proof. The action on morphisms 𝑓 : 𝑉 → 𝑊 is the function

!𝑉 ⊸ !𝑊 generated by 𝛿𝑣 ↦→ 𝛿𝑓 (𝑣) , which is well defined by the

hypothesis that 𝑓 is order-continuous and with norm at most 1 and

Lemma 3.15. Concretely, assume {𝛿𝑣𝛼 }𝛼 ↑ 𝛿𝑣 which implies that

𝑣𝛼 ↑ 𝑣 . By assumption, 𝑓 (𝑣𝛼) ↑ 𝑓 (𝑣) and by Scott-continuity of 𝛿 ,

𝛿𝑓 (𝑣𝛼) ↑ 𝛿𝑓 (𝑣) .
The functor laws follow as a consequence of Lemma 3.21:

!(id𝑉) (𝛿𝑣) = 𝛿𝑣 = id!𝑉 (𝛿𝑣)
!(𝑓 ◦ 𝑔) (𝛿𝑣) = 𝛿𝑓 (𝑔 (𝑣)) = (!𝑓 ◦ !𝑔) (𝛿𝑣). □

Now we can define a comonad structure over !, where the counit

𝜀𝑉 : !𝑉 ⊸ 𝑉 is the function generated by 𝛿𝑣 ↦→ 𝑣 and the co-

multiplication 𝜌𝑉 : !𝑉 ⊸ ‼𝑉 is generated by 𝛿𝑣 ↦→ 𝛿𝛿𝑣 . Their

order-continuity and norm being at most 1 follow from arguments

similar to the functorial action.

Theorem 3.23. The triple (!, 𝜀𝑉 , 𝜌𝑉) is a comonad in PBanLat1.

Classical Linear Logic in Perfect Banach Lattices

! !
2

!

!
2

!
3

! !
2

!
2

𝜌

!𝜌

𝜌

𝜌!

!𝜀

id id

𝜀!

𝜌

Figure 1: Comonad laws

Proof. it follows from Lemma 3.21 that we need only show

commutativity of the diagrams in Figure 1 for the points 𝛿𝑣 :

𝜌!𝑉 (𝜌𝑉 (𝛿𝑣)) = 𝜌!𝑉 (𝛿𝛿𝑣) = 𝛿𝛿𝛿𝑣

= (!𝜌𝑉) (𝛿𝛿𝑣) = (!𝜌𝑉) (𝜌𝑉 (𝛿𝑣))

(!𝜀!𝑉) (𝜌𝑉 (𝛿𝑣)) = (!𝜀!𝑉) (𝛿𝛿𝑣) = 𝛿𝑣

(𝜀
!
2𝑉) (𝜌𝑉 (𝛿𝑣)) = (𝜀

!
2𝑉) (𝛿𝛿𝑣) = 𝛿𝑣 . □

Finally, we must show that the Seely isomorphisms !(𝑉 &𝑊) �
!𝑉 ⊗!𝑊 and !⊤ � 1 hold. The former is given by the pair of functions

generated by 𝛿 (𝑣,𝑤) ↦→ 𝛿𝑣 ⊗ 𝛿𝑤 and 𝛿𝑣 ⊗ 𝛿𝑤 ↦→ 𝛿 (𝑣,𝑤) , and the

latter is given by the functions generated by 𝛿0 ↦→ 1 and 1 ↦→ 𝛿0.

Both of these isomorphisms can be checked by a direct calculation.

Theorem 3.24. The category PBanLat1 is a model of classical linear
logic.

Remark 3.25. Our construction deviates slightly from previous

work by constructing the comonad directly, instead of defining a

monoidal adjunction between a symmetric monoidal closed cat-

egory and a cartesian one. We opted for the direct construction

because it does not need the definition of the cartesian category or

a characterization of the morphisms !𝑉 ⊸𝑊 , which would have

required a careful analysis of order-convergence of monotone func-

tions B(𝑉)+ →𝑊 , as was done in [14]. We have conducted such

an analysis for a distinct order continuous exponential, where the
non-linear morphisms are the order continuous functions between

positive unit balls. The details are in Appendix B.

3.5 Fixed Points
In order to give semantics to recursive probabilistic programs,

we need to be able to compute fixed points of morphisms !𝑉 ⊸
𝑉 with norm ≤ 1. Since our objects are perfect Banach spaces,

they satisfy the weak Fatou property, which in turn can be used

to define fixed points of Scott continuous endofunctions. After

all, every positive Scott-continuous function 𝑓 : B(𝑉) → B(𝑉)
induces an ascending chain {𝑓 𝑛 (0)}𝑛∈N which is norm bounded

by assumption and therefore admits a supremum.

Definition 3.26. A function 𝑓 : B(𝑉)+ → B(𝑊)+ is called ana-
lytic if there is a positive function 𝑔 : !𝑉 ⊸𝑊 with norm ≤ 1 such

that 𝑓 (𝑣) = 𝑔(𝛿𝑣).

Due to Lemma 3.21, every function 𝑔 : !𝑉 ⊸𝑊 with norm ≤ 1

may only be associated to one analytic function. The definition

above suggests that if the function 𝛿 : B(𝑉) → B(!𝑉) is Scott
continuous then every analytic function admits a fixed point. We

know that this is the case by Corollary 3.16.

Therefore, every positive analytic function𝑔 is also order-continuous

and monotonic, since they can be seen as the composition of 𝛿 with

𝑔, meaning that we can compute its fixed point by using Lemma 2.23.

Next, consider the program 𝜆𝐹 𝑓 . 𝑓 (𝐹 𝑓) : !(!(!𝑉 ⊸ !𝑉) ⊸ 𝑉)) ⊸
!(!𝑉 ⊸ 𝑉) ⊸ 𝑉 . It is possible to show that it is positive and that it

has norm 1, therefore by precomposing it with 𝛿 it admits a fixed

point, which we call Fix . By construction, we have the equation

(Fix 𝐹) (𝑓) = 𝑓 ((Fix 𝐹) (𝑓)), making (Fix 𝐹) (𝑓) the fixed point of

𝑓 . Furthermore, by construction, Fix 𝐹 has type !(!𝑉 ⊸ 𝑉) ⊸ 𝑉 ,

meaning that it can be interpreted in PBanLat1.

4 PROBABILISTIC COHERENCE SPACES AND
BANACH LATTICES

Probabilistic coherence spaces (PCS) [9] are a model of linear

logic with a vector space flavor. It has been shown by Ehrhard [13]

that its intuitionistic fragment can be fully and faithfully embedded

in a category of positive cones. In this section, we show that Banach

lattices can handle not only the intuitionistic fragment of PCS,

but the classical one as well. We make use of the vector space

construction presented in the original paper [9].

Definition 4.1. A Probabilistic Coherence Space (PCS) is a pair

(𝑋,P(𝑋)), where 𝑋 is a countable set and P(𝑋) ⊆ 𝑋 → R+
called

the web such that:

• ∀𝑎 ∈ 𝑋 ∃𝜀𝑎 > 0 𝜀𝑎 · 𝛿𝑎 ∈ P(𝑋), where 𝛿𝑎 (𝑎′) = 1 iff 𝑎 = 𝑎′

and 0 otherwise;

• ∀𝑎 ∈ 𝑋 ∃𝜆𝑎 ∀𝑥 ∈ P(𝑋) 𝑥𝑎 ≤ 𝜆𝑎 ;

• P(𝑋)⊥⊥ = P(𝑋), where P(𝑋)⊥ = {𝑥 ∈ 𝑋 → R+ | ∀𝑣 ∈
P(𝑋) ∑

𝑎∈𝑋 𝑥𝑎𝑣𝑎 ≤ 1}.

Definition 4.2. Let (𝑋,P(𝑋)) be a PCS. Its linear negation is the

PCS (𝑋,P(𝑋)⊥).

Definition 4.3. Let (𝑋,P(𝑋)) and (𝑌,P(𝑌)) be PCSs. The PCS
𝑋 ⊸ 𝑌 is the pair (𝑋 × 𝑌,P(𝑋 ⊸ 𝑌)), where 𝑃 (𝑋 ⊸ 𝑌)) = {𝑀 :

𝑋 × 𝑌 → R+ | ∀𝑣 ∈ P(𝑋) 𝑀 · 𝑣 ∈ P(𝑌)}.

The intuition behind Definition 4.1 is that the web of every PCS

corresponds to the positive unit ball of a partially-ordered vector

space. This idea is used by Ehrhard and Danos [9] to define a functor

that maps every PCS to a Banach space. It is possible to show that

this vector space can be equipped with a Riesz space structure,

where the order is defined pointwise.

Definition 4.4. Given a PCS (|𝑋 |,P𝑋), we define 𝐵𝑋 = {𝑢 ∈
R |𝑋 | | |𝑢 | ∈ P𝑋 } and 𝑒𝑋 =

⋃
𝜆>0

𝜆𝐵𝑋 . The pair (𝑒𝑋,𝑢 ↦→ sup

𝑢′∈P𝑋⊥
⟨|𝑢 |, 𝑢′⟩)

is the normed Riesz space associated with the PCS (|𝑋 |,P𝑋).

It is shown in [9] that 𝑒𝑋 is a Banach space. Furthermore, the

lattice structure can be defined pointwise, making 𝑒𝑋 a Banach

lattice. Later in this section we will show that 𝑒 can be made into a

functor.

4.1 PCoh and duality
Ehrhard and Danos have shown that the partial order plays an

important role in understanding how to generalize PCoh [9]. In

Pedro H. Azevedo de Amorim, Leon Witzman, and Dexter Kozen

their attempt to obtain an intrinsic representation for probabilistic

coherence spaces, the authors use exclusively the norm and cannot

prove the equation 𝑒 (𝑋⊥) = 𝑒 (𝑋)⊥, where 𝑒 (𝑋)⊥ is the norm dual.

That said, we can show that this functor preserves order-duality.

Note that the proof uses the fact that 2
𝑋
is a directed set.

Theorem 4.5. For every probabilistic coherence space 𝑋 , there is a
natural isomorphism 𝑒 (𝑋⊥) � 𝑒 (𝑋)𝜎 .

Proof. If 𝑢 ∈ 𝑒 (𝑋⊥), consider the element 𝑓𝑢 = 𝜆𝑥 . ⟨𝑢+, 𝑥⟩ −
⟨𝑢−, 𝑥⟩. It is possible to show that the function 𝜆𝑥 . ⟨𝑢, 𝑥⟩ is positive
and Scott-continuous, therefore order-continuous for every 𝑢 ∈
P(𝑋). Using this result, it is not hard to show that 𝑓𝑢 ∈ 𝑒 (𝑋)𝜎 .

Conversely, consider an element 𝑓 ∈ 𝑒 (𝑋)𝜎 . Without loss of

generality, we can assume that 𝑓 is positive. We want to associate

to 𝑓 an element in 𝑒 (𝑋⊥). As is shown by [9], we can alternatively

characterize the space 𝑒 (𝑋) as

{𝑢 ∈ R |𝑋 | | ∃𝜆 > 0 ∀𝑢′ ∈ P(𝑋⊥) ⟨|𝑢 |, 𝑢′⟩ ≤ 𝜆}.
Consider the function 𝑓𝛿 = 𝜆𝑥 . 𝑓 (𝛿𝑥). Let us show that 𝑓𝛿 ∈

𝑒 (𝑋⊥). To do this, we show that for every 𝑢 ∈ P(𝑋), ⟨|𝑓 ′ |, 𝑢⟩ is
uniformly bounded. Let (𝑢𝛼)𝛼∈P

fin
(𝑋) be the ascending net 𝑢𝛼,𝑎 =

𝑢𝑎 if 𝑎 ∈ 𝛼 and 0 otherwise. By expanding the definition, we get

the equality

⟨|𝑓𝛿 |, 𝑢𝛼 ⟩ =
∑︁
𝑎∈ |𝑋 |

|𝑓 (𝛿𝑎) |𝑢𝛼,𝑎 =∑︁
𝑎∈ |𝑋 |

|𝑓 (𝛿𝑎𝑢𝛼,𝑎) | =
∑︁
𝑎∈ |𝑋 |

𝑓 (𝛿𝑎𝑢𝛼,𝑎).

We get the last equality from 𝑓 being a positive function. Since

every 𝑢𝛼 has finite support, the expression above is well defined.∑︁
𝑎∈ |𝑋 |

𝑓 (𝛿𝑎𝑢𝛼,𝑎) = 𝑓
©«
∑︁
𝑎∈ |𝑋 |

𝛿𝑎𝑢𝛼,𝑎
ª®¬ = 𝑓 (𝑢𝛼)

Since 𝑓 is order-continuous and monotone and {𝑢𝛼 } is an in-

creasing net, we can conclude that ⟨|𝑓𝛿 |, 𝑢⟩ ≤ 𝑓 (𝑢), therefore for
every𝑢 ∈ P(𝑋), ⟨|𝑓𝛿 |, 𝑢⟩ ≤ ∥ 𝑓 ∥ and 𝑓𝛿 ∈ 𝑒 (𝑋⊥). If 𝑓 is not positive,
we decompose it as the difference of two positive maps 𝑓 = 𝑓 +− 𝑓 −

and define 𝑓𝛿 = 𝑓 +
𝛿
− 𝑓 −

𝛿
.

A direct calculation shows that this is indeed an isomorphism.

□

Corollary 4.6. For every PCS (𝑋,P(𝑋)) the vector space 𝑒𝑋 is a
perfect Banach lattice.

Since convergence for PCS is defined componentwise, it is possi-

ble to use a similar proof technique to show

Theorem 4.7. The operation 𝑒 is monoidal closed and functorial.

Proof. The functoriality of 𝑒 has been proven in Section 5.1 of

[9]. □

Another important theorem which is direct to show is.

Theorem 4.8. The functor 𝑒 : PCoh → PBanLat1 is full and
faithful.

We still do not know whether this functor also preserves the

exponential. Recent work suggests that this might be the case [7].

5 CATEGORIES OF CONES AND PBanLat1
Even though PBanLat1 is a mathematically natural model of

linear logic, it relies on tools from functional analysis not usually

familiar to computer scientists. On the other hand, in recent years,

cones have found numerous applications in semantics of program-

ming languages and logics. In this section we show that PBanLat1
is isomorphic to a category cones, meaning that computer scien-

tists can translate their intuitions about cones to this novel setting

without having to learn functional analysis.

As it was frequently mentioned throughout this paper, every

Banach lattice gives rise to a positive cone. Furthermore, since

every PBanLat1 morphism 𝑓 : 𝑉 →𝑊 is positive and has norm at

most 1, it restricts to a linear function B(𝑉)+ → B(𝑊)+. With this

observations we state a few definitions from [7, 13], which assume

that the cones are separated.

Definition 5.1. A cone 𝐶 is a R+
-semimodule with a norm ∥ · ∥ :

𝐶 → R+
.

Every cone can be equipped with the partial order 𝑥 ≤ 𝑦 if and

only if there is a 𝑧 such that 𝑥 + 𝑧 = 𝑦, meaning that it is possible

to define a partial subtraction operation whenever 𝑥 ≤ 𝑦, calling

𝑦 − 𝑥 the element such that 𝑥 + (𝑦 − 𝑥) = 𝑦.

A function 𝑓 : 𝐶1 → 𝐶2 between cones is linear if it commutes

with addition and scalar multiplication, it is monotonic if it pre-

serves the order relation, and it is Scott-continuous if for every

directed set 𝑥𝛼 with supremum 𝑥 , sup𝛼 𝑓 (𝑥𝛼) = 𝑓 (𝑥). As is the
case with partially-ordered vector spaces, there are different classes

of cones where the order and the norm have particular properties:

Definition 5.2. A cone 𝐶 is said to be:

• Sequentially complete if every norm-bounded sequence has

a least upper bound.

• Directed complete if every norm-bounded directed set has

a least upper bound.

• A lattice cone if the poset structure is a lattice.

Using this notation, it seems appropriate to imagine that there

should be a functor PBanLat1 → CLat, where CLat is the category
of directed complete cone lattices. It is unclear, however, if there

is a mapping on morphisms. Luckily, the lemma below guarantees

that the mapping is well-defined.

Lemma 5.3. Let 𝑉 and𝑊 be two perfect Banach lattices and 𝑓 :

𝑉 →𝑊 a linear, positive function of norm at most 1. The function
𝑓 is order-continuous if and only if sup𝑥∈𝐴 𝑓 (𝑥) = 𝑓 (𝑣) whenever
𝐴 ⊆ 𝑉 + is a non-empty upwards-directed set with supremum 𝑣 .

Proof. This result is a direct consequence of the weak Fatou

property. □

Since the mapping on morphisms is basically the identity, the

functorial laws hold, which allows us to conclude that there is a

functor PBanLat1 → CLat.
Next, we would like to map every positive cone to a vector space.

Let 𝐶 be a positive cone and define

𝐶 −𝐶 = {(𝑐1, 𝑐2) | 𝑐1, 𝑐2 ∈ 𝐶}/∼,
where ∼ is the binary relation (𝑐1, 𝑐2) ∼ (𝑐3, 𝑐4) iff 𝑐1 + 𝑐4 = 𝑐2 +
𝑐3. Intuitively, 𝐶 − 𝐶 corresponds to the vector space of formal

Classical Linear Logic in Perfect Banach Lattices

differences 𝑐1 − 𝑐2 of elements in 𝐶 . The equivalence relation is

used to capture the fact that, for instance, (3, 2) and (4, 3) should
represent the same real number, since 3 − 2 = 1 = 4 − 3.

Theorem 5.4. Let 𝐶 be a directed complete cone lattice. Then 𝐶 −𝐶

is a perfect Banach lattice.

Proof. The proof can be found in the Appendix C. □

By linearity, Scott-continuous functions 𝑓 : 𝐶 → 𝐷 with norm at

most 1 extend to order-continuous functions 𝑓 : (𝐶−𝐶) → (𝐷−𝐷)
with norm at most 1 and we can prove that there is a functor

CLatLin → PBanLat1. With this functor and the positive cone

restriction functor defined, it is a direct calculation to show:

Theorem 5.5. The categories PBanLat1 and CLatLin are isomor-
phic.

6 AN ENRICHED PROBABILISTIC RECURSIVE
CALCULUS

Though it is theoretically interesting understanding how PBanLat1
relates to existing models of linear logic, we are also interested in

using it as a semantic basis for a language with probabilistic primi-

tives. Being symmetric monoidal closed, it can give semantics to

the linear 𝜆-calculus. This, however, is insufficient from a program-

ming point of view. The linearity restrictions are severely limiting

in terms of which programs one can define in this language. A

frequently used solution to this lack of expressivity is to use the

exponential modality, where the coKleisli category is Cartesian

closed, meaning that it can interpret the 𝜆-calculus.

There are two problems with this approach. The first one is that

since the 𝜆-calculus has unrestricted 𝛽-reduction, it models a call-

by-name (CBN) reduction strategy, which is ill-fit for programming

with probabilities, since under this semantics, programs are not

able to reuse samples. The second problem is more subtle: since

probability theory usually proves theorems about random variables

or Markov kernels, and not spaces of functionals over power se-

ries, it would be hard to apply useful lemmas and theorems from

probability theory when reasoning about programs.

The first point has been addressed in previous work [14], where

the authors present a modification of their cone-based semantic

domain so that it can accommodate a sample reuse operation with

the following typing rule:

Γ ⊢ 𝑡 : R Γ, 𝑥 : R ⊢ 𝑢 : R

Γ ⊢ let 𝑡 = 𝑥 in𝑢 : R
Operationally, the program above samples a real number from 𝑡 ,

binds the value to 𝑥 and continues as 𝑢, where 𝑥 will not modify

its value throughout the execution of 𝑢. In their semantics, R is

interpreted as the positive cone of measures over the real line.

However, this semantics still suffer from the second problem.

Markov kernels are not central in their semantics, absolute mono-

tonic functions are. We argue that in a probabilistic programming

languages kernels should be at the foreground while the exponen-

tial should only be as a syntactic artefact for programming more

intricate kernels with the expressive power of the 𝜆-calculus.

In this section we build on recent work [3] that proposes a new

syntax for programming with linear operators and Markov kernels.

The proposed calculus will deal with both problems at the same time

and will maintain a nice separation between value and computation

variables at the syntactic level.

The 𝜆𝐿𝐿
𝑀𝐾

metalanguage. The semantic structure used to interpret

the calculus of [3] is given by a triple (C, L,M), where C is roughly

a category of Markov kernels
3
, L is a symmetric monoidal closed

category andM : C → L is a lax monoidal functor.

This two-level structure manisfests itself at the syntactic level

by having a two-level syntax: the first level is used to program

kernels while the second one serves as a kind of metalanguage that

has access to higher-order functions, both of which are depicted

in Figure 2, where the highlighted parts of the grammar are the

extensions that we will explain in the next section. The linear

language has linear function types, which allows for higher-order

programming and, unlike most languages based on linear logic,

it has a modality M, which corresponds to the types that may

be sampled from. The variables bound by the linear context are,

roughly speaking, computations. In the language for kernels there

are no linearity restrictions and, therefore, variables, i.e. samples

from distributions, can be freely duplicated and discarded. Under

this perspective, the variables in MK programs should be thought

of as values. The intuition behind this language is that linearity

forbids distributions to be sampled more than once, but once you

have the sample in hands, it can be used as many times as you want.

Each layer has its own typing judgement relations ⊢𝐿𝐿 and ⊢𝑀𝐾 ,
which we go over in more detail in Appendix A. We highlight one

of the most interesting rules; it is the rule that allows programs to

be transported between layers:

Sample

𝑥1 : 𝜏1 · · · 𝑥𝑛 : 𝜏𝑛 ⊢𝑀𝐾 𝑀 : 𝜏 Δ; Γ𝑖 ⊢𝐿𝐿 𝑡𝑖 : M𝜏𝑖 0 < 𝑖 ≤ 𝑛

Δ; Γ1, · · · , Γ𝑛 ⊢𝐿𝐿 sample 𝑡𝑖 as 𝑥𝑖 in𝑀 : M𝜏

Operationally, it samples from 𝑛 LL programs {𝑡𝑖 }𝑖 , each sample

is bound to the corresponding variable in {𝑥𝑖 }𝑖 and finally the

continuation𝑀 is executed.

We want to model 𝜆𝐿𝐿
𝑀𝐾

with PBanLat1. For that we still need a

CD category and a lax monoidal functor. For the CD category we

will use the category of measurable spaces and sub-Markov kernels.

Definition 6.1. The category sStoch has measurable spaces as

objects and sub-Markov kernels as morphisms, i.e. measurable func-

tions between a measurable space and the space of subprobability

distributions over a measurable space.

sStoch is a CD category, whichmeans that it is symmetricmonoidal,

with the monoidal product being the product measurable space.

Theorem 6.2. There is a lax monoidal functor M : sStoch →
PBanLat1.

Proof. There is a standard functor M that maps measurable

sets to the vector space of signed measures and sub-Markov kernels

𝑓 : 𝐴 → 𝑀𝐵 to the linear functionM 𝑓 (𝜇) =
∫
𝑓 𝑑𝜇. The proof of

linearity is standard, but order-continuity requires a few words. Let

{𝜇𝛼 } ↓ 0 be a descending arrow, M 𝑓 (𝜇𝛼) =
∫
𝑓 𝑑𝜇𝛼 ≤

∫
1𝑑𝜇𝛼 =

3
a CD category, to be more precise

Pedro H. Azevedo de Amorim, Leon Witzman, and Dexter Kozen

Variables 𝑥,𝑦, 𝑧

Reals 𝑟 ∈ R
MK Expressions 𝑀 ::= 𝑥 | 𝑟 | uniform | (𝑀1, 𝑀2) | 𝜋1𝑀 | 𝜋2𝑀 | let 𝑥 = 𝑀 in 𝑁 | 𝑡 (𝑀)
LL Expressions 𝑡,𝑢 ::= 𝑥 | 𝜆𝑥 .𝑡 | 𝑡 𝑢 | 𝑡 ⊗ 𝑢 | let 𝑥 ⊗ 𝑦 = 𝑡 in 𝑢 | sample 𝑡𝑖 as 𝑥𝑖 in𝑀

| !𝑡 | let !𝑥 = 𝑡 in 𝑢 | fix 𝑡

Types MK 𝜏 ::= R | 𝜏 × 𝜏

Types LL 𝜏 ::= 1 | M𝜏 | 𝜏 ⊸ 𝜏 | 𝜏 ⊗ 𝜏 | !𝜏

Linear Contexts Γ ::= 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛
MK Contexts Γ ::= 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛

Figure 2: Terms and Types of the Enriched 𝜆𝐿𝐿
𝑀𝐾

𝜇𝛼 (𝐴) which, as 𝜇𝛼 goes to zero, so does 𝜇𝛼 (𝐴), making
˜𝑓 order-

continuous. The functorial laws also follows from standard proofs

from the literature.

To show that M is lax monoidal, we need to define a natural

transformation 𝜇𝑋,𝑌 : M(𝑋) ⊗ M(𝑌) → M(𝑋 × 𝑌) which is

easily defined by the universal property of the tensor product and

a morphism 𝜀 : R ⊸ M(1) which maps a real number 𝑟 to the

measure 𝑟𝛿{∗} , where ∗ is the only member of the singleton set 1.

Showing that the necessary diagrams commute follows from the

universal property of the tensor product. □

Thismeans that the triple (sStoch, PBanLat1,M) is a 𝜆𝐿𝐿
𝑀𝐾

model.

Though this is already provides a syntax for programming with

linear operators and kernels, it is still not sufficiently expressive.

While it can write programs that samples from a distribution and

uses the sample more than once:

sample uniform as 𝑥 in (𝑥 + 𝑥)

It cannot write other seemingly reasonable programs. Assume that

𝜆𝐿𝐿
𝑀𝐾

has a primitive normal : MR ⊸ MR where, given an input

𝑟 , outputs the normal distribution with variance 1 and mean 𝑟 , the

following program is not well-typed:

𝜇 : MR ⊬𝐿𝐿 sample 𝜇 as 𝑥 in (normal𝑥) + (normal𝑥) : MR

even though it never samples more than once from distributions.

Extending 𝜆𝐿𝐿
𝑀𝐾

. While the description of 𝜆𝐿𝐿
𝑀𝐾

above gives some

context on how to program with it, it is not very well detailed. A

more thorough introduction to the language is given in Appendix A.

In this section we extend 𝜆𝐿𝐿
𝑀𝐾

in order to address some of its

expressivity limitations by adding recursion, a “let” rule similar to

the one defined in [14] and the non-linear modality.

By using the fact that PBanLat1 is enriched over CPO and con-

tains a linear logic exponential, the type system can be readily

extended by adding the type constructor ! and the following typing

rules:

!-Var

𝑥 : 𝜏 ∈ Δ

Δ; · ⊢ 𝑥 : 𝜏

!-Intro

Δ; · ⊢𝐿𝐿 𝑡 : 𝜏

Δ; · ⊢𝐿𝐿 !𝑡 : !𝜏

!-Elim

Δ; Γ1 ⊢𝐿𝐿 𝑡 : !𝜏1 Δ, 𝑥 : 𝜏1; Γ2 ⊢𝐿𝐿 𝑢 : 𝜏2

Δ; Γ1, Γ2 ⊢𝐿𝐿 let !𝑥 = 𝑡 in 𝑢 : 𝜏2

Note that the typing judgement has two contexts: one for linear

variables and one for non-linear variables. The variable rule is

interpreted by the counit 𝜀. For the introduction rule, the linear

context to be empty and its semantics is given by ! J𝑡K ◦ 𝜌 while the

elimination rule is the sequential composition of J𝑡K and J𝑢K.
The recursion operation is captured by the following rule:

LetRec

Δ, 𝑥 : !𝜏 ; Γ ⊢𝐿𝐿 𝑡 : 𝜏

Δ; Γ ⊢𝐿𝐿 𝜇𝑥 .𝑡 : 𝜏

Its semantics is defined using the Fix operator defined in Section 3.5.

In order to encode a “let” rule similar to the one from [14] we will

use ideas from enriched category theory. Ideally, a program of

typeM𝜏1 ⊸ M𝜏2 should be a kernel and, therefore, it should be

allowed to be applied to an MK program of type 𝜏1. Syntactically,

this translates to the following rule:

Δ; Γ1 ⊢𝐿𝐿 𝑡 : M𝜏 ⊸ M𝜏 ′ Δ; Γ2;Ξ ⊢𝑀𝐾 𝑀 : 𝜏

Δ; Γ1, Γ2;Ξ ⊢𝑀𝐾 𝑡 (𝑀) : 𝜏 ′

Note that this rule requires the typing judgement for MK programs

to also depend on LL contexts. Though this rule looks promising,

semantically, it is not true that that every morphism M𝜏1 → M𝜏2
in PBanLat1 is a kernel. Categorically, the functorM, even though

it is faithful, it is not full
4
.

We can now motivate the main theorem of this section. The rule

above is very appealing from a programming point of view. As such,

we will call this extension the “enriched 𝜆𝐿𝐿
𝑀𝐾

”.

Definition 6.3. An enriched 𝜆𝐿𝐿
𝑀𝐾

model is a triple (C, L,M) where
C is a CD category, L is symmetric monoidal closed, and M is a

full an faithful lax monoidal functor.

The fullness and faithfulness ofM can be leveraged to interpret

the new application rule asM−1 (J𝑡K𝐿𝐿) ◦ J𝑀K𝑀𝐾 .
With this definition in mind, is it possible to define a subcategory

of PBanLat1 such thatM, when restricted to this subcategory, is

full? Of course, since we want this subcategory to still be a model

of 𝜆𝐿𝐿
𝑀𝐾

, we ask it to be a model of intuitionistic linear logic.

Theorem 6.4. There is a model of intuitionistic linear logic L such
that there is a forgetful functor𝑈 : L → PBanLat1 and the functor

4
The space of signed measures can be decomposed as the space of discrete measures

and the space of continuous measures. In this case it is possible to define a non-kernel

linear operator by pattern-matching on the measure, see [14] for a concrete example.

Classical Linear Logic in Perfect Banach Lattices

M : sStoch → PBanLat1 lifts to a full and faithful lax monoidal
functor M̃ : sStoch → L withM = 𝑈 ◦ M̃.

Proof sketch. We proceed this proof by observing that by look-

ing at the programs that are actually definable in 𝜆𝐿𝐿
𝑀𝐾

, the functor

M is already full. What we must do is to propagate this information

to the whole PBanLat1 and carve out our subcategory.

We achieve this propagation by a categorical logical relations

argument, also known as categorical gluing. The full proof can be

found in Appendix D. □

Corollary 6.5. The triple (sStoch, L, M̃) is a model to the enriched
𝜆𝐿𝐿
𝑀𝐾

.

Example 6.6. Assume that there is a kernel ⊢𝐿𝐿 𝑓 : M𝜏1 ⊸ M𝜏2
and you want to compose it with itself 𝑛 times, for a given natural

number. This can be expressed as the following recursive program:

𝜇𝐹 : !(M(N × 𝜏)) ⊸ M(𝜏) . 𝜆𝜈 : M(N × 𝜏) .
sample 𝜈 as (𝑛, 𝑥) in
if 𝑛 == 0 then𝑥 else 𝐹 (𝑛 − 1, 𝑓 𝑥)

When 𝑛 is 0, it returns the identity function over M𝜏 , otherwise if

𝑛 > 0, it applies 𝑓 once more and calls the recursive function with

𝑛 − 1.

Example 6.7. In order to justify the applicability of the enriched

𝜆𝐿𝐿
𝑀𝐾

calculus as a language for programming computational sta-

tistics algorithms, consider the following fragment of the Gibbs

sampling mechanism, where it is assumed there are kernels 𝑓1 :

𝑀 (𝑋 × 𝑌) ⊸ M(𝑋 × 𝑌 𝑍), 𝑓2 : 𝑀 (𝑋 × 𝑍) ⊸ M(𝑋 × 𝑌 𝑍),
𝑓3 : 𝑀 (𝑌 ×𝑍) ⊸ M(𝑋 ×𝑌 𝑍) and a distribution 𝜈 : M(𝑋 ×𝑌 ×𝑍):

𝜆𝑓1 . 𝜆𝑓2 . 𝜆𝑓3 . 𝜆𝜈 .

sample 𝜈 as (𝑥,𝑦, 𝑧) in
let (𝑥1, 𝑦1, 𝑧1) = 𝑓1 (𝑥,𝑦) in
let (𝑥2, 𝑦2, 𝑧2) = 𝑓2 (𝑥, 𝑧1) in
𝑓3 (𝑦2, 𝑧1)

This program does one “loop” of the Gibbs sampling algorithm.

Theoretically, this mechanism, in the limit, will converge to the

correct distribution. In order to simulate this limit, you can compose

the program abovewith itself an arbitrary number of times, by using

Example 6.6.

7 RELATEDWORK
There have been a number of semantics of linear logic based on

vector space-like objects. Two important families of such semantics

are the ones based on probabilistic coherence spaces and the ones

based on Banach spaces. As we will explain below, we see our model

as a nice synthesis of these two approaches.

Positive Cone Semantics of Linear Logic. [9] shows that probabilistic
coherence spaces are a model of classical linear logic and can inter-

pret a call-by-name probabilistic functional programming language.

[39] extends their call-by-name 𝜆-calculus with a call-by-value let
construct which can be easily interpreted in their original model.

To overcome the limitation that PCoh cannot represent continu-

ous distributions, Ehrhard et al. define a cartesian closed category

CStabm [14], which uses normed R+
-semimodule—which are in

correspondence with positive cones of partially ordered vector

spaces—to interpret a probabilistic variant of PCF with continu-

ous distributions. In a follow-up paper, Ehrhard [13] has defined a

category CLinm of sequentially complete positive cones with mea-

surability paths and linear Scott continuous maps in which PCoh
embeds fully and faithfully.

A similar approach was taken in [37], which defined a category

CCones of so-called coherent cones and linear contractive functions
and showed that it is a model of classical linear logic. These cones

come equipped with a different notion of completeness that is

stronger than sequential completeness but weaker than ours.

From a mathematical point of view, the objects of both CCones
and CStabm are not as well understood as Banach lattices, making

them not ideal semantic frameworks to reason about probabilistic

programs. Besides, our model provides a clear mathematical justifi-

cation for having Fatou-like properties in the semantics: it is forced

upon it by Theorem 2.28 instead of being there for denotational

reasons, as is the case of CStabm, or in enabling the exponential

construction, as is the case ofCCones, showing a kind of canonicity
of our model.

Vector Space Semantics of Linear Logic. Dahlqvist and Kozen [8]

have defined a category of partially ordered Banach spaces RoBan,
shown that it is a model of intuitionistic linear logic, and used it

to interpret a higher-order imperative probabilistic language with

while loops and soft-conditioning.

Their model also uses a mathematically well-understood class

of vector spaces. That being said, by using a more general class

of vector spaces than we do, their model has less structure than

ours. A practical consequence of this lack of structure is that in

order to guarantee the soundness of their semantics, they define 6

type grammars that are used for different program constructs. As

an example, in order to interpret conditionals and while loops the

context may only have Dedekind complete types.

Furthermore, their semantics does not have an equivalent to the

weak Fatou property and cannot interpret our fixed point operator.

In their language, recursion can only be expressed with while-loops.

Another relevant vector space model is the one based on complex

coherent Banach spaces [21]. These vector spaces are not partially

ordered, making them unsuitable for interpreting recursive pro-

grams, they have an involutive linear negation and the exponential

was defined in a time when the categorical semantics of the modal-

ity was not fully developed and, as a consequence, morphisms

!𝐴 ⊸ 𝐵 do not compose, making it not a model of linear logic as

they are currently defined.

Neither RoBan nor CStabm are models of classical linear logic.

Languages for Probabilistic Programming. A lot of work has been

done in working out what are the right abstractions for program-

ming statistical models. In [28] the authors define a functional

programming language with programmable inference, where the

programmers may fine-tune certain parameters of general inference

algorithms that are exposed to the users as primitives in the lan-

guage. There are other languages that make inference a primitive

in the language [6, 10, 22, 30, 40].

Other languages such as Dice [24], focuses on discrete inference

problems in order to handle larger programs. In these kinds of

languages, inference is computed exactly. As such, Dice can be

Pedro H. Azevedo de Amorim, Leon Witzman, and Dexter Kozen

classified as a language for symbolic inference, and is one of many

that adopt a more symbolic approach to inference [19, 32–34, 36, 38]

Sitting at a higher-level of abstraction, the core calculus pre-

sented in [8] has an inference primitive which is interpreted using

the adjoint of linear operators. Unfortunately, the authors to do

connect it to an actual implementation.

Though the enriched 𝜆𝐿𝐿
𝑀𝐾

calculus has no primitive for inference,

it can implement sampling algorithms such as the Gibbs algorithm,

showing that it at least has the potential of implementing modern

inference algorithms. Furthermore, it might be possible to use the

two-level structure of the calculus as a link between the conceptual

operations for inference advocated for by [8] and the low-level

implementation details of actual inference algorithms.

8 CONCLUSION
In this paper we have shown that PBanLat1 is a model of classi-

cal linear logic that conservatively extends PCoh and can be used

to give semantics to a recursive probabilistic calculus. Our model

differs from existing extensions of PCoh that only extends PCoh’s
intuitionistic fragment, meaning that they do not have an involu-

tive negation. We believe that our model is a good fit for formal

verification purposes because Riesz spaces have decades of research

and have been extensively used in the formalization of stochastic

processes.

This work creates some exciting directions for future work.

Ehrhard has shown that the category of Kothe spaces is a model of

differential linear logic [11]. The model looks very similar to PCoh,
with the exception that they do not require a norm. It is a natural

question to ask if by working with perfect unnormed Riesz spaces

instead of perfect Banach lattices one gets a model of differential

linear logic. Furthermore, this would provide a preliminary answer

to the challenge of giving semantics to probabilistic differentiable

languages.

ACKNOWLEDGEMENTS
[suppressed for double-blind reviewing]

REFERENCES
[1] Charalambos D Aliprantis and Owen Burkinshaw. 2006. Positive operators.

Springer.

[2] Robert J Aumann. 1961. Borel structures for function spaces. Illinois Journal of
Mathematics (1961).

[3] Pedro H. Azevedo de Amorim. 2023. A Higher-Order Language for Markov

Kernels and Linear Operators. In Foundations of Software Science and Computation
Structures (FoSSaCS).

[4] P Nick Benton. 1994. A mixed linear and non-linear logic: Proofs, terms and

models. In International Workshop on Computer Science Logic.
[5] Richard Blute, Thomas Ehrhard, and Christine Tasson. 2012. A Convenient

Differential Category. Cahiers de topologie et géométrie différentielle catégoriques
53, 3 (2012), 211–232.

[6] Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich,

Michael Betancourt, Marcus A Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell.

2017. Stan: A probabilistic programming language. Journal of statistical software
(2017).

[7] Raphaëlle Crubillé. 2018. Probabilistic stable functions on discrete cones are

power series. In Logic in Computer Science (LICS).
[8] Fredrik Dahlqvist and Dexter Kozen. 2019. Semantics of higher-order proba-

bilistic programs with conditioning. In Principles of Programming Languages
(POPL).

[9] Vincent Danos and Thomas Ehrhard. 2011. Probabilistic coherence spaces as a

model of higher-order probabilistic computation. Information and Computation
209, 6 (2011), 966–991.

[10] Swaraj Dash, Younesse Kaddar, Hugo Paquet, and Sam Staton. 2023. Affine mon-

ads and lazy structures for bayesian programming. In Principles of Programming
Languages (POPL).

[11] Thomas Ehrhard. 2002. On Köthe sequence spaces and linear logic. Mathematical
Structures in Computer Science 12, 5 (2002), 579–623.

[12] Thomas Ehrhard. 2019. Differentials and distances in probabilistic coherence

spaces. arXiv preprint arXiv:1902.04836 (2019).
[13] Thomas Ehrhard. 2020. On the linear structure of cones. In Logic in Computer

Science (LICS).
[14] Thomas Ehrhard, Michele Pagani, and Christine Tasson. 2017. Measurable

cones and stable, measurable functions: a model for probabilistic higher-order

programming. In Principles of Programming Languages (POPL).
[15] Thomas Ehrhard, Christine Tasson, andMichele Pagani. 2014. Probabilistic coher-

ence spaces are fully abstract for probabilistic PCF. In Principles of Programming
Languages (POPL).

[16] DH Fremlin. 1968. Abstract Köthe spaces IV. In Mathematical Proceedings of the
Cambridge Philosophical Society. Cambridge University Press, 45–52.

[17] David H Fremlin. 2000. Measure theory. Torres Fremlin.

[18] Tobias Fritz. 2020. A synthetic approach to Markov kernels, conditional indepen-

dence and theorems on sufficient statistics. Advances in Mathematics 370 (2020),
107239.

[19] Timon Gehr, Sasa Misailovic, and Martin Vechev. 2016. PSI: Exact symbolic

inference for probabilistic programs. In Computer Aided Verification (CAV).
[20] Stuart Geman and Donald Geman. 1984. Stochastic relaxation, Gibbs distri-

butions, and the Bayesian restoration of images. IEEE Transactions on pattern
analysis and machine intelligence (1984).

[21] Jean-Yves Girard. 1999. Coherent Banach spaces: a continuous denotational

semantics. Theoretical Computer Science 227, 1-2 (1999), 275–297.
[22] Noah D Goodman, Vikash K Mansinghka, Daniel Roy, Keith Bonawitz, and

Joshua B Tenenbaum. 2008. Church: a language for generative models. In Pro-
ceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence.

[23] Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017. A conve-

nient category for higher-order probability theory. In Logic in Computer Science
(LICS).

[24] Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2020. Scaling exact

inference for discrete probabilistic programs. (2020).

[25] Martin Hyland and Andrea Schalk. 2003. Glueing and orthogonality for models

of linear logic. Theoretical computer science (2003).
[26] Marie Kerjean and Christine Tasson. 2018. Mackey-complete spaces and power

series–a topological model of differential linear logic. Mathematical Structures in
Computer Science 28, 4 (2018), 472–507.

[27] Dexter Kozen. 1979. Semantics of probabilistic programs. In Symposium on
Foundations of Computer Science (SFCS).

[28] Alexander K Lew, Marco F Cusumano-Towner, Benjamin Sherman, Michael

Carbin, and Vikash K Mansinghka. 2019. Trace types and denotational semantics

for sound programmable inference in probabilistic languages. In Principles of
Programming Languages (POPL).

[29] WAJ Luxemberg and AC Zaanen. 1963. Notes on Banach function spaces VI-XIII.

Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series
A 66 (1963), 251–263.

[30] Vikash K Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian

Chen, and Martin Rinard. 2018. Probabilistic programming with programmable

inference. In Programming Language Design and Implementation (PLDI).
[31] Paul-André Mellies. 2009. Categorical semantics of linear logic. Panoramas et

syntheses 27 (2009), 15–215.
[32] Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and

Robert Zinkov. 2016. Probabilistic inference by program transformation in

Hakaru (system description). In Functional and Logic Programming (FLOPS).
[33] Praveen Narayanan and Chung-chieh Shan. 2020. Symbolic disintegration with

a variety of base measures. ACM Transactions on Programming Languages and
Systems (TOPLAS) (2020).

[34] Feras A Saad, Martin C Rinard, and Vikash KMansinghka. 2021. SPPL: probabilis-

tic programming with fast exact symbolic inference. In Programming Language
Design and Implementation (PLDI).

[35] H. H. Schaefer. 1970. Banach Lattices and Positive Operators. Springer.
[36] Chung-chieh Shan and Norman Ramsey. 2017. Exact Bayesian inference by

symbolic disintegration. In Principles of Programming Languages (POPL).
[37] Sergey Slavnov. 2021. Linear logic in normed cones: probabilistic coherence

spaces and beyond. Mathematical Structures in Computer Science 31, 5 (2021),
495–534.

[38] Dario Stein and Sam Staton. 2021. Compositional semantics for probabilistic

programs with exact conditioning. In Logic in Computer Science (LICS).
[39] Christine Tasson and Thomas Ehrhard. 2019. Probabilistic call by push value.

Logical Methods in Computer Science 15 (2019).
[40] David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank Wood. 2016.

Design and implementation of probabilistic programming language anglican. In

Implementation and Application of Functional programming Languages (IFL).

Classical Linear Logic in Perfect Banach Lattices

[41] Martinus Bernardus Jozephus Gerhardus van Haandel. 1993. Completions in
Riesz space theory. Ph.D. Dissertation. Katholieke Universiteit Nijmegen.

[42] Adriaan C Zaanen. 2012. Introduction to operator theory in Riesz spaces. Springer.

Pedro H. Azevedo de Amorim, Leon Witzman, and Dexter Kozen

Var

Γ, 𝑥 : 𝜏 ⊢𝑀𝐾 𝑥 : 𝜏

Const

𝑟 ∈ R

Γ ⊢𝑀𝐾 𝑟 : R

Uniform

Γ ⊢𝑀𝐾 uniform : R

Let

Γ ⊢𝑀𝐾 𝑡 : 𝜏1 Γ, 𝑥 : 𝜏1 ⊢𝑀𝐾 𝑢 : 𝜏

Γ ⊢𝑀𝐾 let 𝑥 = 𝑡 in 𝑢 : 𝜏

Pair

Γ ⊢𝑀𝐾 𝑡 : 𝜏1 Γ ⊢𝑀𝐾 𝑢 : 𝜏2

Γ ⊢𝑀𝐾 (𝑡,𝑢) : 𝜏1 × 𝜏2

Proj1

Γ ⊢𝑀𝐾 𝑡 : 𝜏1 × 𝜏2

Γ ⊢𝑀𝐾 𝜋1𝑡 : 𝜏1

Proj2

Γ ⊢𝑀𝐾 𝑡 : 𝜏1 × 𝜏2

Γ ⊢𝑀𝐾 𝜋2𝑡 : 𝜏2

Axiom

𝑥 : 𝜏 ⊢𝐿𝐿 𝑥 : 𝜏

Unit

· ⊢𝐿𝐿 unit : 1

Abstraction

Γ, 𝑥 : 𝜏1 ⊢𝐿𝐿 𝑡 : 𝜏2

Γ ⊢𝐿𝐿 𝜆𝑥 .𝑡 : 𝜏1 ⊸ 𝜏2

Application

Γ1 ⊢𝐿𝐿 𝑡 : 𝜏1 ⊸ 𝜏2 Γ2 ⊢𝐿𝐿 𝑢 : 𝜏1

Γ1, Γ2 ⊢𝐿𝐿 𝑡 𝑢 : 𝜏2

Tensor

Γ1 ⊢𝐿𝐿 𝑡 : 𝜏1 Γ2 ⊢𝐿𝐿 𝑢 : 𝜏2

Γ1, Γ2 ⊢𝐿𝐿 𝑡 ⊗ 𝑢 : 𝜏1 ⊗ 𝜏2

LetTensor

Γ1 ⊢𝐿𝐿 𝑡 : 𝜏1 ⊗ 𝜏2 Γ2, 𝑥 : 𝜏1, 𝑦 : 𝜏2 ⊢𝐿𝐿 𝑢 : 𝜏

Γ1, Γ2 ⊢𝐿𝐿 let 𝑥 ⊗ 𝑦 = 𝑡 in 𝑢 : 𝜏

Sample

𝑥1 : 𝜏1 · · · 𝑥𝑛 : 𝜏𝑛 ⊢𝑀𝐾 𝑀 : 𝜏 Δ; Γ𝑖 ⊢𝐿𝐿 𝑡𝑖 : M𝜏𝑖 0 ≤ 𝑖 < 𝑛

Δ; Γ1, · · · , Γ𝑛 ⊢𝐿𝐿 sample 𝑡𝑖 as 𝑥𝑖 in𝑀 : M𝜏

Figure 3: Typing rules for 𝜆𝐿𝐿
𝑀𝐾

A A METALANGUAGE FOR LINEAR OPERATORS AND MARKOV KERNELS
In this section we further explain the two-level language 𝜆𝐿𝐿

𝑀𝐾
and its semantics. The language MK corresponds to an effectful language

with probabilistic primitives and where free variables are assumed to be values, as opposed to computations. For instance, the program

𝑥 : N, 𝑦 : N ⊢𝑀𝐾 𝑥 + 𝑦 : N is interpreted as a deterministic program. This language is interpreted in a CD category, which can be seen as an

abstraction for programming with commutative effects [18].

Definition A.1. CD categories are symmetric monoidal categories such that every object 𝐴 has a commutative comonoid structure

copy𝐴 : 𝐴 → 𝐴 ⊗ 𝐴 and delete𝐴 : 𝐴 → 1 satisfying certain structural properties.

In the context of probabilistic programming, there are many CD categories to choose from. In particular, for any subprobability monad, its

Kleisli category is a CD category. This is the case for the sStoch category, since it can be characterized as the category of measurable sets

and measurable functions 𝐴 → G(𝐵), where G is the subprobability monad overMeas.
The language LL is basically a linear 𝜆-calculus. By itself, linearity limits the expressivity of the language quite a bit. In the original paper,

the author argues that for probabilistic programming, the linear usage of variables is, semantically, too restrictive, since many probabilistic

which are linear, in the semantic sense, may use variables for than once [3]. This observation led to the introduction of the M modality in

the LL language which allows MK programs to be called from an LL program. Semantically, this is interpreted as a lax monoidal functor.

Definition A.2. Let C andD be monoidal categories. A (lax) monoidal functor is a functor 𝐹 : C → D equipped with a natural transformation

𝜀𝐴,𝐵 : 𝐹𝐴 ⊗D 𝐹𝐵 → 𝐹 (𝐴 ⊗C 𝐵) and a morphism 𝐼D → 𝐹 (𝐼C) making certain coherence diagrams commute.

From a programming point of view, typesM𝜏 should be thought of as types from which one can sample from. Supposing that the language

has a primitive uniform for the uniform distribution over the unit interval the Sample construct can be used to write the program

sample uniform as 𝑥 in (𝑥 + 𝑥)
The program above samples from a uniform distribution and adds the result to itself. This program illustrates why this syntax increases the

expressivity of the linear 𝜆-calculus. By allowing the continuation 𝑥 + 𝑥 to be an MK program, variables may be freely reused or discards

without worrying about syntactic restriction imposed by linearity.

However, once inside the MK language, there is no way of going back to the higher-order language, meaning that the program

sample uniform as 𝑥 in (sample uniform as 𝑦 in (𝑥 + 𝑦)) is not well-typed. This is mitigated by lax monoidality, which makes it pos-

sible to simultaneously sample from distributions: sample (uniform, uniform) as (𝑥,𝑦) in (𝑥 + 𝑦).

Definition A.3. A model of 𝜆𝐿𝐿
𝑀𝐾

is a triple (C, L,M), where C, a symmetric monoidal closed category L andM : M → C is a lax monoidal

functor.

The typing rules are depicted in Figure 3. They are basically the amalgamation of the rules for programming with CD categories, i.e. a

first-order expression language with pairs, with symmetric monoidal closed categories, i.e. the linear 𝜆-calculus with tensor types. The

main novelty is the introduction of the lax monoidal modality M and its accompanying typing rule Sample which connects the MK and LL

languages.

Much like the typing rules, the categorical semantics of 𝜆𝐿𝐿
𝑀𝐾

is the combination of the categorical semantics of the internal languages

of CD categories and the linear 𝜆-calculus with the exception of the Sample rule that makes use of the functor M. The full semantics is

depicted in Figure 4.

Classical Linear Logic in Perfect Banach Lattices

Var

𝜏 × Γ
𝑖𝑑𝜏×𝑑𝑒𝑙Γ−−−−−−−−→ 𝜏

Let

Γ
𝑀−−→ 𝜏1 Γ × 𝜏1

𝑁−−→ 𝜏2

Γ
𝑐𝑜𝑝𝑦;(𝑖𝑑×𝑀) ;𝑁
−−−−−−−−−−−−−−→ 𝜏2

× Intro

Γ
𝑀−−→ 𝜏1 Γ

𝑁−−→ 𝜏2

Γ
𝑐𝑜𝑝𝑦;𝑀×𝑁
−−−−−−−−−−→ 𝜏1 × 𝜏2

× Elim𝑖

Γ
𝑀−−→ 𝜏1 × 𝜏2

Γ
𝑀 ;(𝑖𝑑𝜏𝑖 ×𝑑𝑒𝑙)−−−−−−−−−−−→ 𝜏𝑖

Var

𝜏
𝑖𝑑𝜏−−−→ 𝜏

Abstraction

Γ ⊗ 𝜏1
𝑡−→ 𝜏2

Γ
cur(𝑡)
−−−−−→ 𝜏1 ⊸ 𝜏2

Application

Γ1
𝑡−→ 𝜏1 ⊸ 𝜏2 Γ2

𝑢−→ 𝜏1

Γ1 ⊗ Γ2
(𝑡⊗𝑢) ;ev
−−−−−−−→ 𝜏2

⊗ Intro

Γ1
𝑡−→ 𝜏1 Γ2

𝑢−→ 𝜏2

Γ1 ⊗ Γ2
𝑡⊗𝑢−−−→ 𝜏1 ⊗ 𝜏2

⊗ Elim

Γ1
𝑡−→ 𝜏1 ⊗ 𝜏2 Γ2 ⊗ 𝜏1 ⊗ 𝜏2

𝑢−→ 𝜏

Γ1 ⊗ Γ2
(𝑖𝑑⊗𝑡) ;𝑢
−−−−−−−→ 𝜏

Sample

𝜏1 × · · · × 𝜏𝑛
𝑀−−→ 𝜏 Γ𝑖

𝑡𝑖−→ M𝜏𝑖

Γ1 ⊗ · · · ⊗ Γ𝑛
𝑡1⊗···⊗𝑡𝑛−−−−−−−−→ M𝜏1 ⊗ · · · ⊗ M𝜏𝑛

𝜇
−→ M(𝜏1 × · · · × 𝜏𝑛)

M𝑀−−−−→ M𝜏

Figure 4: Categorical Semantics of 𝜆𝐿𝐿
𝑀𝐾

B CONTINOUS EXPONENTIAL
Let 𝑉 be a perfect Banach lattice and consider the positive cone 𝐶 (𝑉)+ of (norm) continuous bounded functions 𝑓 : B(𝑉)+ → R. This set

can be equipped with the pointwise partial order 𝑓 ≤ 𝑔 iff ∀𝑥 𝑓 (𝑥) ≤ 𝑔(𝑥) by using the the sup norm ∥ 𝑓 ∥ = sup𝑥∈B(𝑉)+ |𝑓 (𝑥) |.

Lemma B.1. The space 𝐶 (𝑉) is a Riesz space.

Proof. Let 𝑓 , 𝑔 ∈ 𝐶 (𝑉) and observe that 𝑓 ∨𝑔 = 𝜆𝑥 . max(𝑓 (𝑥), 𝑔(𝑥)) is bounded and continuous and since we are assuming the pointwise

order, it can be shown to be the least upper bound of 𝑓 and 𝑔. □

An𝑀-space is a Banach lattice whose norm satisfies ∥𝑥 ∨𝑦∥ = ∥𝑥 ∥ ∨ ∥𝑦∥ for positive 𝑥,𝑦. If the unit ball of an𝑀-space contains a largest

element, it is known as a unit of the space.

Theorem B.2. The space 𝐶 (𝑉) is an𝑀-space.

Proof. Let 𝐶𝜏 (𝑉) be the vector space of bounded (topologically) continuous functions 𝑓 : B(𝑉)+ → R. In [35, Example 2, p. 103], it is

shown that for any topological space 𝑋 , the vector space of all bounded, real-valued continuous functions on 𝑋 with the pointwise order is

an𝑀-space with unit 𝜆𝑥 .1. In such spaces, the closed unit ball is the order interval [−𝜆𝑥 .1, 𝜆𝑥 .1], so

∥ 𝑓 ∥ ≤ 1 ⇔ 𝑓 ∈ [−𝜆𝑥 .1, 𝜆𝑥 .1] ⇔ sup

𝑥∈𝑋
|𝑓 (𝑥) | ≤ 1,

therefore ∥ 𝑓 ∥ = sup𝑥∈𝑋 |𝑓 (𝑥) |. Taking 𝑋 = B(𝑉)+, we have that 𝐶𝜏 (𝑉) is an𝑀-space with norm ∥ 𝑓 ∥ = sup𝑥∈B(𝑉)+ |𝑓 (𝑥) |. □

Corollary B.3. The space 𝐶 (𝑉) is a Banach lattice.

In order to define the exponential !𝑉 , we are interested in a particular subspace of 𝐶 (𝑉)𝜎 . For every 𝑣 ∈ B(𝑉)+, let 𝛿𝑣 ∈ 𝐶 (𝑉)𝜎 be the

Dirac delta distribution defined as the functional 𝛿𝑣 (𝑓) = 𝑓 (𝑣). We want !𝑉 to be a perfect Banach lattice contained in 𝐶 (𝑉)𝜎 which contains

the linear span of the delta distributions as a norm-dense subset. At a high level, our construction comprises two steps. The first step consists

of extending the linear span of the Dirac distributions to a Riesz space containing this span as an order-dense subset.

Next, we take the norm closure of this Riesz space in 𝐶 (𝑉)𝜎 and obtain a perfect Banach lattice. By transitivity of order-density, the span

of the delta distributions is once again dense in this space.

Free Riesz spaces. Once again we will make use of the free Riesz space construction described in Section 3.4.

Lemma B.4 ([5]). If 𝑣1, . . . , 𝑣𝑛 ∈ B(𝑉)+ are distinct vectors, then the distributions 𝛿𝑣1 , . . . , 𝛿𝑣𝑛 are linearly independent.

Let Δ(𝑉) be the normed Riesz space generated by the partially ordered vector space spanned by {𝛿𝑣}𝑣∈B(𝑉)+ according to Theorem 3.11.

Pedro H. Azevedo de Amorim, Leon Witzman, and Dexter Kozen

𝐿-spaces and order closure. For the next part, we need to introduce some terminology. We say that a Banach lattice 𝑉 is an 𝐿-space if for
all positive vectors 𝑣1, 𝑣2, ∥𝑣1 + 𝑣2∥ = ∥𝑣1∥ + ∥𝑣2∥. These spaces are also called abstract Lebesgue spaces because they can be seen as a

generalization of 𝐿1 spaces. In particular, for every measurable space, the space of signed measures over it is an 𝐿-space.

As previously mentioned, a tricky aspect of Banach lattices is that the order and norm topologies do not always give rise to the same

continuous functionals. In 𝐿-spaces, this distinction disappears. This will be useful in showing that our construction gives both a Riesz and a

Banach space.

Lemma B.5. The space 𝐶 (𝑉)𝜎 is an 𝐿-space.

Proof. Since 𝐶 (𝑉) is a Banach lattice, so is 𝐶 (𝑉)𝜎 . Let 𝐹 ∈ 𝐶 (𝑉)𝜎 and positive. Then ∥𝐹 ∥ = 𝐹 (𝜆𝑥 .1), as the function 𝜆𝑥 .1 is the

maximum element of the unit ball in 𝐶 (𝑉) (see Theorem B.2). Therefore, for positive 𝐹1, 𝐹2, ∥𝐹1 + 𝐹2∥ = 𝐹1 (𝑒) + 𝐹2 (𝑒) = ∥𝐹1∥ + ∥𝐹2∥. □

We define the exponential !𝑉 of a space 𝑉 as the order-closure of Δ(𝑉) in 𝐶 (𝑉)𝜎 . 𝐿-spaces are extremely well-behaved and so are their

subspaces. Our proof strategy relies on the fact that 𝐿-spaces are always perfect and in showing that !𝑉 is an 𝐿-space in its own right.

Lemma B.6 (Proposition 356P(a) [17]). Every 𝐿-space is perfect.

Therefore, by showing that !𝑉 is an 𝐿-space it follows that it is a perfect Banach lattice. A canonical way of obtaining a Banach space out

of a normed vector space is by taking its norm-closure. In general, however, since our spaces are also Riesz, it might be the case that the

norm-closure is not a Riesz space. Luckily, for 𝐿-spaces, order-closed spaces are also norm-closed making them Banach.

Lemma B.7 (Proposition 354O[17]). Every norm-closed Riesz subspace of an 𝐿-space is an 𝐿-space.

Lemma B.8. If 𝑉 is an 𝐿-space and𝑈 is order-dense in 𝑉 then it is also norm-dense.

Theorem B.9. The space !𝑉 is a perfect Banach lattice with the the span of {𝛿𝑣}𝑣∈B(𝑉)+ as an norm-dense subset.

Proof. The proof follows by observing that since !𝑉 is defined as the norm-closure of a Riesz space, by the corollary above, it is also an

𝐿-space, which by Lemma B.6 implies that it is a perfect Banach lattice; the span of the deltas are norm-dense by transitivity of norm-density,

since by the lemma above, the deltas are norm-dense in their freely generated Riesz space. □

Lemma B.10. Let 𝑉 and𝑊 be perfect Banach lattices and 𝑋 ⊆ B(𝑉)+ a norm-dense set. Every norm-continuos function 𝑓 : 𝑋 → B(𝑊)+
extends uniquely to a function ˜𝑓 : B(𝑉)+ → B(𝑊)+.

Proof. The extension is defined using the fact that B(𝑊)+ is a complete metric space. □

Linear-Non-Linear adjunction. An important step in our understanding of categorical models of linear logic was taken by Nick Benton

[4], where he realized that by taking the coKleisli adjoint factorization of the exponential, you get a very conceptually clean categorical

description. We will use his insights in this section to define an alternative exponential to that defined in Section 3.4.

Definition B.11 ([31], Chap. 7, Definition 21). Let L be symmetric monoidal closed and M Cartesian. A Linear-Non-Linear adjunction is a

strong monoidal adjunction:

(M,×, 1) (L, ⊗, 𝐼)
𝐿

𝑀

⊣

I.e. the adjoint functors preserve the monoidal structures up to isomorphism.

It has been proved that such a categorical setup is enough for the comonad generated by the adjunction to be a linear logic exponential,

where the Seely isomorphisms are given by the strong monoidal structure of the adjunction.

Let OBanLat be the category with perfect Banach lattices as objects and norm-continuous functions B+ (𝑉) → B+ (𝑊) as morphisms.

Since composition is just function composition, this is indeed a category.

Lemma B.12. The map 𝛿 : B+ (𝑉) → B+ (!𝑉) is norm-continuous.

Note that, differently from its power series counterpart, the map above is not monotonic.

Example B.13. Consider the endofunction 𝑓 (𝑥) = 1 − 𝑥 on the interval [0, 1]. The function is a morphism R → R in OBanLat. Now, let
0 ≤ 𝑟 ≤ 𝑠 ≤ 1. It is not true that 𝛿𝑟 ≤ 𝛿𝑠 , precisely because 𝑓 (𝑠) ≤ 𝑓 (𝑟).

Theorem B.14. There is a monoidal adjunction between PBanLat1 and OBanLat.

Classical Linear Logic in Perfect Banach Lattices

Proof. There is an inclusion functor PBanLat1 ↩→ OBanLat that maps a space to itself and a linear function to its restriction to the

positive unit ball, which is well-defined because morphisms in PBanLat1 are positive and with norm at most 1.

To go in the other direction, the functor maps spaces 𝑉 to !𝑉 and norm-continous functions 𝑓 to the function generated by 𝛿𝑣 ↦→ 𝛿𝑓 (𝑣) ,
which can be extended to a PBanLat1 morphism because of Lemma B.10.

The adjunction isomorphisms by mapping a linear morphism 𝑓 : !𝑉 → 𝑊 to 𝑓 ◦ 𝛿 : 𝑉 → 𝑊 and an order-continuous morphism

𝑔 : 𝑉 →𝑊 to the extension of 𝑔 ◦ 𝛿 via Lemma B.10. Showing that they are mutual inverses is a direct calculation and application of the

extension lemma. □

C PROOF OF THEOREM 5.4
Let 𝐶 be a directed complete lattice cone. In order to define functions over it we use the universal property of quotients: it suffices to

define it over every pair (𝑐1, 𝑐2) while guaranteeing that the function acts the same over every equivalence class.

For instance, the vector space structure can be simply defined componentwise. Let (𝑐1, 𝑐2), (𝑐3, 𝑐4) ∈ 𝐶 −𝐶 then we define

(𝑐1, 𝑐2) + (𝑐3, 𝑐4) = (𝑐1 + 𝑐3, 𝑐2 + 𝑐4)
𝛼 (𝑐1, 𝑐2) = (𝛼𝑐1, 𝛼𝑐2) for 𝛼 ≥ 0

𝛼 (𝑐1, 𝑐2) = (−𝛼𝑐2,−𝛼𝑐1) otherwise

The lattice operations require a bit more ingenuity, and we first observe the equation 𝑢 ∨ 𝑣 = 𝑢 + (𝑣 − 𝑢)+ which holds in every Riesz

space, reducing the lowest upper bound operation to addition and the positive part. By doing some algebraic manipulations we get that

if (𝑐1, 𝑐2), (𝑐3, 𝑐4) ∈ 𝐶 −𝐶 then we define (𝑐1, 𝑐2) ∨ (𝑐3, 𝑐4) = (𝑐1, 𝑐2) − ((𝑐3, 𝑐4) − (𝑐1, 𝑐2))+ = (𝑐1, 𝑐2) + (𝑐3 + 𝑐2 − (𝑐1 + 𝑐4) ∧ (𝑐2 + 𝑐3), 0) =
(𝑐1 + 𝑐3 + 𝑐2 − (𝑐1 + 𝑐4) ∧ (𝑐2 + 𝑐3), 𝑐2). The lattice equations such as commutativity and idempotency follow by unfolding the definitions and

from 𝐶 being a lattice.

Before defining a norm over 𝐶 −𝐶 we first need the following lemma

Lemma C.1. (𝐶 −𝐶)+ � {(𝑐, 0) | 𝑐 ∈ 𝐶} � 𝐶 .

Proof. The mapping {(𝑐, 0) | 𝑐 ∈ 𝐶} → (𝐶 −𝐶)+ is the injection through the equivalence class function and the mapping in the other

direction can be constructed by observing that whenever (𝑐1, 𝑐2) ≥ (0, 0) it can be shown that 𝑐1 ≥ 𝑐2 and, therefore, (𝑐1 − 𝑐2, 0) = (𝑐1, 𝑐2)
and this decomposition is unique, since (𝑐, 0) = (𝑑, 0) implies, by definition of ∼ that 𝑐 = 𝑑 . The second isomorphism is trivial. □

Given a norm over 𝐶 it is possible to extend it to a norm over 𝐶 − 𝐶 . This follows from the property of normed Riesz spaces, where

∥|𝑣 |∥ = ∥𝑣 ∥ which forces us to define ∥(𝑐1, 𝑐2)∥ = ∥|(𝑐1, 𝑐2) |∥𝐶 . Note that since | (𝑐1, 𝑐2) | is a positive element of 𝐶 −𝐶 , by the lemma above

it can be mapped back to an element of 𝐶 which, in turn, has a norm.

Therefore, we have shown that 𝐶 −𝐶 is a normed Riesz space. Since 𝐶 has the directed completeness property it follows that 𝐶 −𝐶 has

the weak Fatou property and, therefore, it is Banach and perfect.

D PROOF OF THEOREM 6.4
Glued models of linear logic.

Definition D.1. Let C be a category and 𝐹 : C → Set. The comma category (𝐹 ↓ 𝑖𝑑) is defined as the following lax pullback.

(𝐹 ↓ 𝑖𝑑) Set

C Set𝐹

𝑖𝑑

Concretely, its objects are triples (𝐴 : C, 𝑋 : Set, 𝑓 : 𝑋 → 𝐹 (C)) and morphisms are pairs (𝑓 : 𝐴 → 𝐵,𝑔 : 𝑋 → 𝑌) making the usual diagrams

commute. The will use the notation 𝐺𝑙𝐹 (C) to refer to the comma category (𝐹 ↓ 𝑖𝑑).

The comma category is one of the building blocks in categorical logical relations. There has been much work done in proving when such

a category has similar categorical properties to C [25].

Definition D.2. Let C and D be models of intuitionistic linear logic (ILL). A functor 𝐹 : C → D will be called distributively linear if it is

monoidal (in the usual lax sense) and there is a natural transformation 𝜅 :!D𝐹 → 𝐹 !C such that:

respects the comonad structure:

!𝐹𝐴 !!𝐹𝐴 𝐹 (!𝐴)

𝐹𝐴 𝐹 (!𝐴) 𝐹 (!!𝐴)

𝜅!𝐴𝜅𝐴

𝐹 (𝛿𝐴)𝐹 (𝜀𝐴)

𝜀𝐹 (𝐴)

𝛿𝐹𝐴 !𝜅𝐴

Pedro H. Azevedo de Amorim, Leon Witzman, and Dexter Kozen

respects the comonoid structure:

𝐼 !𝐹𝐴 !𝐹𝐴⊗!𝐹𝐴

𝐹𝐼 𝐹 (!𝐴) 𝐹 (!𝐴⊗!𝐴)

𝑒𝐹𝐴

𝐹 (𝑒𝐴)

𝑚𝐼 𝜅𝐴

𝐹 (𝑑𝐴)

𝑑𝐹𝐴

𝑚!𝐴,!𝐴◦(𝜅𝐴⊗𝜅𝐴)

and is monoidal:

𝐼 !𝐹𝐴⊗!𝐹𝐵 𝐹 (!𝐴) ⊗ 𝐹 (!𝐵)

!𝐹𝐼 𝐹 (!𝐼) !𝐹 (𝐴 ⊗ 𝐵) 𝐹 !(𝐴 ⊗ 𝐵)
𝑒1

𝜅𝐼

𝑒2

𝜅𝐴⊗𝜅𝑏
𝜇1 𝜇2

𝜅𝐴⊗𝐵

In the monoidal diagram above, the monoidal structure (𝑒1, 𝜇1) and (𝑒2, 𝜇2) are defined using the facts that ! is, by definition a lax monoidal

functor, and lax monoidality is stable under composition.

Lemma D.3 ([25]). Consider Set as a model of ILL with the trivial identity comonad and Cartesian closed structure, and C a model of ILL such
that it has a linearly distributive functor 𝐹 : C → Set, then the comma category 𝐺𝑙𝐹 (C) is a model fo ILL and the forgetful functor preserves the
linear logic structure on the nose.

We will prove Theorem 6.4 by applying the lemma above, it is only a matter of finding the appropriate functor. When one wants

to prove properties about closed programs in a particular type theory, the global sections C(𝐼 ,−) is used. Since we are interested in

understading the behaviour of open programs where the context only has variables of typesM𝜏1, . . . ,M𝜏𝑛 , we will consider the functor>
𝜏1,...,𝜏𝑛∈sStoch

PBanLat1 (M𝜏1 ⊗ · · · ⊗ M𝜏𝑛,−). Note that when the index of the infinite product is the empty list, it is the global sections

functor.

All we have to do now is to prove that it is linearly distributive. We do this by proving the lemma below.

Lemma D.4. Let 𝐹1 : C → Set be a linearly distributive functor and 𝐹2 : C → Set a functor such that there is a natural transformation
𝜂 : 𝐹1 → 𝐹2. The functor 𝐹 = 𝐹1 × 𝐹2 is linearly distributive.

Proof. In order to prove that 𝐹 is linearly distributive, we must first define its lax monoidal structure and the natural transformation

𝜅 : 𝐹 → 𝐹 !. Let𝑚′
𝐼
and𝑚′

𝐴,𝐵
be the lax monoidal structure of 𝐹1 and 𝜅

′
its linearly distributive structure. We define:

𝑚𝐼 =𝑚′
𝐼 ; ⟨𝑖𝑑, 𝜂𝐼 ⟩

𝑚𝐴,𝐵 = (𝜋1 × 𝜋1);𝑚′
𝐴,𝐵 ; ⟨𝑖𝑑, 𝜂𝐴⊗𝐵⟩

𝜅𝐴 = 𝜋1;𝜅
′
𝐴; ⟨𝑖𝑑, 𝜂!𝐴⟩

In order to prove that this structure does indeed satisfy the linearly distributivity conditions, note that since we are using the trivial ILL

model in Set, the comonad diagrams get simpler. Throughout the proof we will repeatedly make use of the following naturality diagram:

𝐹1𝐴 𝐹1𝐵

𝐹1𝐴 × 𝐹2𝐴 𝐹1𝐵 × 𝐹2𝐵

⟨𝑖𝑑,𝜂𝐴 ⟩

𝐹1 𝑓 ×𝐹2 𝑓

𝐹1 𝑓

⟨𝑖𝑑,𝜂𝐵 ⟩

We start from the comonadic diagrams:

𝐹1𝐴 × 𝐹2𝐴

𝐹1𝐴

𝐹1𝐴 𝐹1!𝐴

𝐹1𝐴 × 𝐹2𝐴 𝐹1 (!𝐴) × 𝐹2 (!𝐴)
𝐹1 (𝜀𝐴)×𝐹2 (𝜀𝐴)

𝜋1

𝜅′
𝐴

⟨𝑖𝑑,𝜂!𝐴 ⟩
𝐹1 (𝜀𝐴)

⟨𝑖𝑑,𝜂𝐴 ⟩

𝜀𝐹𝐴

Classical Linear Logic in Perfect Banach Lattices

𝐹1𝐴 × 𝐹2𝐴 𝐹1𝐴 𝐹1!𝐴 𝐹1!𝐴 × 𝐹2!𝐴

𝐹1𝐴 𝐹1!𝐴

𝐹1!𝐴 𝐹1!!𝐴

𝐹1!𝐴 × 𝐹2!𝐴 𝐹1!!𝐴 × 𝐹2!!𝐴

𝐹1 (𝜌𝐴)

𝐹1 (𝜌𝐴)×𝐹2 (𝜌𝐴)
⟨𝑖𝑑,𝜂!𝐴 ⟩ ⟨𝑖𝑑,𝜂!!𝐴 ⟩

𝜅′
!𝐴

𝜅′
𝐴

𝜅′
𝐴

𝜋1

𝜋1 𝜅′
𝐴 ⟨𝑖𝑑,𝜂!𝐴 ⟩

𝜋1

Next, the comonoid diagrams:

1 𝐹1𝐴 × 𝐹2𝐴

1 𝐹1𝐴

𝐹1𝐼 𝐹1!𝐴

𝐹1𝐼 × 𝐹2𝐼 𝐹1!𝐴 × 𝐹2!𝐴

𝐹1 (𝑒𝐴)
⟨𝑖𝑑,𝜂!𝐴 ⟩⟨𝑖𝑑,𝜂𝐼 ⟩

𝐹1 (𝑒𝐴)×𝐹2 (𝑒𝐴)

𝜅′
𝐴

𝜋1

!𝐹
1
𝐴

!𝐹
1
𝐴×𝐹

2
𝐴

𝑚′
𝐼

Note that the morphism ! above is the unique morphism into the terminal object 1.

𝐹1𝐴 × 𝐹2𝐴 (𝐹1𝐴 × 𝐹2𝐴) × (𝐹1𝐴 × 𝐹2𝐴)

𝐹1𝐴 𝐹1𝐴 × 𝐹1𝐴

𝐹1!𝐴 × 𝐹1!𝐴

𝐹 !𝐴 × 𝐹 !𝐴

𝐹1!𝐴 × 𝐹1!𝐴

𝐹1!𝐴 𝐹1 (!𝐴⊗!𝐴)

𝐹1!𝐴 × 𝐹2!𝐴 𝐹1 (!𝐴⊗!𝐴) × 𝐹2 (!𝐴⊗!𝐴)
𝐹1 (𝑑𝐴)×𝐹2 (𝑑𝐴)

𝜋1

𝜅′
𝐴

⟨𝑖𝑑,𝜂!𝐴 ⟩

𝐹1 (𝑑𝐴)

⟨𝑖𝑑,𝜂!𝐴⊗!𝐴 ⟩

𝑚′
!𝐴,!𝐴

𝜋1×𝜋1

⟨𝑖𝑑,𝜂!𝐴 ⟩×⟨𝑖𝑑,𝜂!𝐴 ⟩

𝜅′
𝐴
×𝜅′

𝐴

𝜋1×𝜋1

Δ𝐹
1
𝐴×𝐹

2
𝐴

Δ𝐹
1
𝐴

Lastly, the monoidal diagrams:

1 𝐹1𝐼 𝐹1𝐼 × 𝐹2𝐼

𝐹1

𝐹1𝐼 × 𝐹2𝐼 𝐹1𝐼 𝐹1!𝐼 𝐹1!𝐼 × 𝐹2!𝐼

𝑚′
𝐼

𝐹1 (𝜓𝐼)×𝐹2 (𝜓𝐼)

⟨𝑖𝑑,𝜂!𝐼 ⟩

𝐹𝜓𝐼

⟨𝑖𝑑,𝜂𝐼 ⟩

𝜅′
𝐼

𝜋1

⟨𝑖𝑑,𝜂𝐼 ⟩

𝑚′
𝐼

Pedro H. Azevedo de Amorim, Leon Witzman, and Dexter Kozen

𝐺𝑙𝐹 (PBanLat1)

sStoch PBanLat1
M

𝑈
M̃

Figure 5: Lifting of the 𝜆𝐿𝐿
𝑀𝐾

model

(𝐹1𝐴 × 𝐹2𝐴) × (𝐹1𝐵 × 𝐹2𝐵) 𝐹1𝐴 × 𝐹2𝐵 𝐹1!𝐴 × 𝐹1!𝐵 (𝐹1!𝐴 × 𝐹2!𝐵) × (𝐹1!𝐴 × 𝐹2!𝐵)

𝐹1𝐴 × 𝐹1𝐵 𝐹1!𝐴 × 𝐹2!𝐵

𝐹1 (𝐴 ⊗ 𝐵) 𝐹1 (!𝐴⊗!𝐵)

𝐹1 (!𝐴⊗!𝐵) × 𝐹2 (!𝐴⊗!𝐵)

𝐹 (𝐴 ⊗ 𝐵) × 𝐹2 (𝐴 ⊗ 𝐵) 𝐹1 (𝐴 ⊗ 𝐵) 𝐹1 (!(𝐴 ⊗ 𝐵)) 𝐹1 (!(𝐴 ⊗ 𝐵)) × 𝐹2 (!(𝐴 ⊗ 𝐵))

𝐹1 (𝛼𝐴,𝐵)×𝐹2 (𝛼𝐴,𝐵)

⟨𝑖𝑑,𝜂!𝐴⊗!𝐵 ⟩

𝑚′
!𝐴,!𝐵

𝜋1×𝜋1

⟨𝑖𝑑,𝜂!𝐴 ⟩×⟨𝑖𝑑,𝜂!𝐵 ⟩𝜋1×𝜋1 𝜅′
𝐴
×𝜅′

𝐵

𝜋1×𝜋1

𝑚′
𝐴,𝐵

⟨𝑖𝑑,𝜂𝐴⊗𝐵 ⟩

𝜋1 𝜅′
𝐴⊗𝐵 ⟨𝑖𝑑,𝜂

!(𝐴⊗𝐵) ⟩

𝜅′
𝐴⊗𝐵

𝐹1 (𝛼𝐴,𝐵)

□

Corollary D.5. The functor
>

𝜏1,...,𝜏𝑛∈sStoch
PBanLat1 (M𝜏1 ⊗ · · · ⊗ M𝜏𝑛,−) is linearly distributive.

Theorem D.6. The comma category 𝐺𝑙𝐹 (PBanLat1) is an ILL model and the forgetful functor preserves the structure on the nose.

Proof. This follows directly from the lemmas above. □

This shows that we can use the glued category to interpret our recursive probabilistic calculus, with the exception of the fixed point

operation, since in order to it to be a morphism in the glued category, the set 𝑋 should be equipped with an 𝜔CPO structure. We can achieve

this by restricting the glued category to only such 𝑋 .

Lemma D.7. The full subcategory of 𝐺𝑙𝐹 (PBanLat1) such that the maps (𝑋 → 𝐹𝐴) are injections and 𝜔CPOs under the inherited order of 𝐹 is
an ILL model.

Proof. It suffices to show that this subcategory is closed under the all of the connectives of ILL, which can de done by unfolding the

definitions and noting that, by Theorem 2.28, the positive unit ball of perfect Banach lattices are CPOs. □

Theorem D.8. The model (sStoch, PBanLat1,M) lifts to a model (sStoch,𝐺𝑙𝐹 (PBanLat1), M̃) such that the forgetful functor preserves the
structure and M̃ is full and faithful.

Proof. We start by defining the action of M̃ on objects and morphisms,

M̃(𝐴) = (M𝐴,𝑋𝐴 = {𝑓 : M𝐴1 ⊗ · · · ⊗ M𝐴𝑛 → M𝐴 | ∃𝑔 ∈ sStoch(𝐴1 × · · · ×𝐴𝑛, 𝐴), 𝑓 = 𝜇𝑛 ;M𝑔})

M̃(𝑔) = M(𝑔)
In the defintion above, 𝜇𝑛

𝐴1,...,𝐴𝑛
: M𝐴1 ⊗ · · · ⊗ M𝐴𝑛 → M(𝐴1 × · · · ×𝐴𝑛) is the natural transformation that can be generated using the

lax monoidal structure ofM. The action on morphisms is well-defined by functoriality ofM, since 𝜇;M(𝑔′);M(𝑔) = 𝜇;M(𝑔′;𝑔). From
functoriality of M, it also follows the functor laws of M̃.

The monoidality of M̃ follows from proving that the monoidal structureM lifts to the glued category, which follows from naturality of 𝜇

and by definition of the tensor product in the glued category, that ensures that the morphismM𝐴1 ⊗ · · · ⊗ M𝐴𝑛 → M𝐵1 ⊗ M𝐵2 can be

factored as 𝑔1 ⊗ 𝑔2. A similar argument can be made for the unit 𝐼 → 𝐹𝐼 .

The lifted functor is faithful because so isM, and its fullness can be proved by first considering a morphism 𝑓 : M𝐴 → M𝐵 in 𝐺𝑙𝐹 (C)
and noting that the identity M𝐴 → M𝐴 is in 𝑋𝐴 , which allows us to conclude, by definition of morphism in the glued category, that

𝑖𝑑 ; 𝑓 = 𝑓 is in 𝑋𝐵 , meaning that it is indeed in the image of M̃.

□

	Abstract
	1 Introduction
	2 Riesz spaces
	2.1 Order convergence
	2.2 Riesz subspaces, solids, ideals and bands
	2.3 Order-continuous functions
	2.4 Normed Riesz spaces
	2.5 Dualities
	2.6 Signed measures as Riesz spaces

	3 Models of linear logic
	3.1 Symmetric Monoidal Closed Structure
	3.2 *-autonomous categories
	3.3 Cartesian and co-Cartesian structure
	3.4 Exponentials
	3.5 Fixed Points

	4 Probabilistic coherence spaces and Banach lattices
	4.1 PCoh and duality

	5 Categories of Cones and PBanLat1
	6 An Enriched Probabilistic Recursive Calculus
	7 Related work
	8 Conclusion
	References
	A A Metalanguage for Linear Operators and Markov Kernels
	B Continous Exponential
	C Proof of Theorem 5.4
	D Proof of Theorem 6.4

