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Abstract8

In recent years, researchers have proposed various models of linear logic with strong connections9

to measure theory, with probabilistic coherence spaces (PCoh) being one of the most prominent.10

One of the main limitations of the PCoh model is that it cannot interpret continuous measures.11

To overcome this obstacle, Ehrhard has extended PCoh to a category of positive cones and linear12

Scott-continuous functions and shown that it is a model of intuitionistic linear logic. In this work13

we show that the category PBanLat1 of perfect Banach lattices and positive linear functions of14

norm at most 1 can serve the same purpose, with some added benefits. We show that PBanLat1 is15

a model of classical linear logic (without exponential) and that PCoh embeds fully and faithfully in16

PBanLat1 while preserving the monoidal structure. Finally, we show how PBanLat1 can be used17

to give semantics to a higher-order probabilistic programming language.18
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1 Introduction22

Recent work has shown that linear logic has deep connections to the semantics of23

probabilistic programming languages [7, 13, 10, 12, 11, 34, 9, 22, 6]. By using monoidal24

closed categories instead of cartesian closed categories, linear logic provides an alternative25

categorical framework for higher-order functions. This was foreshadowed in early work on26

probabilistic semantics [23] in which bounded linear operators on Banach lattices were used27

to interpret a first-order imperative probabilistic programming language. This can be seen as28

evidence that a linear approach might be a natural alternative to cartesian closed categories.29

Since then, many probabilistically-flavored models of linear logic have appeared. For30

instance, the connection between the early work of [23] and linear logic has been recently31

made precise [6], where the category of regular ordered Banach spaces and regular maps32

(RoBan) was used to extend the semantics of [23] with higher-order functions. It was shown33

in [6] that RoBan is a model of intuitionistic linear logic.34

An appealing aspect of the RoBan model is that ordered Banach spaces are mathematic-35

ally well-understood objects with a well-developed classical theory, thus providing a plethora36

of useful theorems to reason about programs. This is illustrated in [6] by using results37

from ergodic theory to prove the correctness of a Gibbs sampling algorithm implemented38

in a higher-order language. However, the programming model supported by the semantics39

is somewhat brittle, in that the soundness of the system depends on a tricky interaction40

between three different type grammars with several syntactic restrictions.41

A different approach was taken in [7], in which a category PCoh was defined and shown42

to be a model of classical linear logic. The model was used to interpret a version of PCF43

extended with discrete probabilities [13]. Although this category handles discrete probabilities44

very nicely, it cannot interpret continuous distributions such as the normal distribution over45
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R, a severe limitation for real-world applications. To remedy this, a category of positive46

cones with measurability paths and linear Scott-continuous functions CLinm has recently47

been introduced and shown to be a conservative extension of the intuitionistic fragment of48

PCoh [11].49

From a programming point of view, the language of [11] is an extension of the simply50

typed λ-calculus with recursion, making it a simple and expressive programming model.51

However, the definition of positive cone with measurability paths deviates from standard52

objects from the probability literature and thus would require a large amount of mathematical53

effort to rephrase useful theorems that could be used to reason about programs.54

Although these previous approaches are valuable contributions to our understanding55

of higher-order probabilistic programming through linear logic, missing up to now is a56

comprehensive model that embodies the following desirable aspects:57

extends PCoh to admit continuous measures;58

is a model of classical (not just intuitionistic) linear logic, thus allowing it to handle other59

computational interpretations of linear logic such as session types;60

has a simple and expressive programming model that can handle higher-order computation;61

is based on well-understood classical structures from measure theory and functional62

analysis.63

In this paper we propose such a model. Our model extends PCoh with continuous probabil-64

ities and satisfies all of the properties above. Our model is based on complete normed vector65

lattices, called Banach lattices. To accommodate the second point, we work with spaces with66

an involutive linear negation, the so-called perfect spaces.67

Compared to previous models, our model has simpler tensor product, which we believe68

lead to a more perspicuous and theoretically satisfying generalization of PCoh. For example,69

we invite a comparison with CLinm, where the construction rely on categorical machinery70

which, though elegant, are indirect.71

Most importantly, Banach lattices can be seen as an abstraction of ordinary measure72

spaces and are well-studied in functional analysis, with many results from measure theory73

holding for certain classes of Banach lattices. There is a vast literature on the subject; see74

[14] for a thorough introduction.75

In order to justify the viability of our model, we show that it can be used to interpret a76

recently introduced higher-order probabilistic calculus [3], and we extend the core calculus of77

that paper with recursion, the nonlinear modality ! and a new typing rule based on enriched78

category theory.79

Summary of contributions80

In §3, we define the category PBanLat1 of perfect Banach lattices and order-continuous81

positive linear operators with norm at most 1 and show that it is a model of classical82

linear logic.83

In §4, we show that there is a full and faithful monoidal closed functor PCoh →84

PBanLat1. This is a more adequate extension than the model CLinm proposed in [11],85

since it also accommodates the classical aspects of the linear structure of PCoh.86

In §5, we show that PBanLat1 is isomorphic to a category of lattices of positive complete87

cones.88

In §6, we show that PBanLat1 is a model to the recently defined calculus in [3].89
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Our work contributes both to the study of quantitative models of linear logic as well as to90

a deeper understanding of higher-order probability theory, shedding light on the importance91

of linear logic as a vehicle to interpret higher-order programs without cartesian closure.92

2 Riesz spaces93

Our model depends on technical definitions and constructions from the vector lattice94

literature. This section contains a brief self-contained presentation of the subject. We point95

the interested reader to the introductory texts [1, 36] for good presentations of much of the96

material presented in this section.97

Although we are primarily interested in Banach lattices—normed vector lattices with a98

completeness property—we start by defining the objects in the general unnormed case.99

▶ Definition 1. Let R+ = {a ∈ R | a ≥ 0}. A Riesz space is a partially-ordered vector space100

(V, ≤) over R such that101

if x ≤ y, then x + w ≤ y + w;102

if x ≤ y, then αx ≤ αy for α ∈ R+; and103

it is an upper semilattice with respect to ≤ with join operation ∨.104

It follows that the space is also a lattice with meet operation x ∧ y = −(−x ∨ −y).105

Many standard vector spaces are Riesz spaces.106

▶ Example 2. The following are Riesz spaces:107

Rn with the pointwise ordering;108

the set of bounded sequences of real numbers with pointwise ordering;109

the set of signed measures on a measurable space;110

the set of bounded measurable functions on a measurable space.111

Unlike the real numbers, there are elements that are neither negative nor positive, but112

a notable characteristic of Riesz spaces is that every element decomposes uniquely into its113

positive and negative parts.114

▶ Definition 3. For v an element of a Riesz space, define v+ = v ∨ 0, v− = (−v) ∨ 0 and115

|v| = v ∨ −v = v+ + v−.116

Then v+ and v− are the unique positive elements such that v = v+ − v− and v+ ∧ v− = 0.117

Thus Riesz spaces are completely characterized by their positive elements. This often118

simplifies constructions, as one can often prove a property for the positive elements, then119

extend to the entire space using this decomposition.120

Given a Riesz space V , let V + denote the set of positive elements of V . Using the121

decomposition property mentioned above, it follows that V = V + − V +, where − applied to122

sets denotes elementwise subtraction.123

2.1 Order convergence124

Every topology gives rise to a notion of convergence. For normed spaces, one usually125

studies convergence in the norm topology. However, ordered spaces also carry an order126

topology.127
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▶ Definition 4. Let D be a directed set and V a Riesz space. A net {vα}α∈D is a function128

D → V . We say that the net is increasing (respectively, decreasing) and write {vα}↑129

(respectively, {vα}↓) if α ≤D β implies vα ≤V vβ (respectively, vα ≥V vβ).130

▶ Definition 5. Given a decreasing net {xα}, we write {xα} ↓ 0 if inf{xα} = 0.131

▶ Definition 6 (Order convergence). We say that a net {xα} converges in order to x and132

write xα → x if there is a decreasing net {yα} ↓ 0 such that for all α, |xα − x| ≤ yα.133

In general, this notion of convergence is neither weaker nor stronger than convergence134

in norm. However, when a net converges in both order and norm, it converges to the same135

value in both.136

2.2 Riesz subspaces, solids, ideals and bands137

In the theory of Riesz spaces, there are classes of subspaces that have many interesting138

properties that will be used in our constructions.139

▶ Definition 7. A subset S of a Riesz space is140

solid if x ∈ S and |y| ≤ |x| implies y ∈ S,141

an ideal if it is a solid linear subspace,142

a band if it is an ideal and closed under existing suprema.143

▶ Definition 8. We say that a Riesz space V is Archimedean if for every v ∈ V +, {v/n}n∈N ↓144

0. Furthermore, if every bounded subset of V admits a supremum, then we say that V is145

Dedekind complete.146

▶ Proposition 9. Every band in a Dedekind complete Riesz space is Dedekind complete.147

▶ Definition 10. A Riesz subspace A ⊆ V is said to be order dense if for every element148

0 < v ∈ V there is an element a ∈ A such that 0 < a ≤ v.149

▶ Theorem 11 ([1], Th. 1.34). A Riesz subspace A is order dense in an Archimedean Riesz
space V iff for every v ∈ V +,

{a ∈ A | 0 ≤ a ≤ v} ↑ v.

2.3 Order-continuous functions150

As usual when studying vector spaces with extra structure, we care only about linear151

maps that interact nicely with the extra structure. In our case, the linear functions will have152

to respect the partial order.153

We call a linear function f : V → W positive if it maps positive elements of V to positive154

elements of W ; that is, it restricts to a function V + → W +. A linear function is regular if it155

can be written as the difference of two positive functions.156

▶ Definition 12. A linear function T : V → W is order-continuous if it is continuous in157

the order topology. Equivalently, T is order-continuous if Tvα → Tv whenever {vα} is an158

increasing net with supremum v.159

We can also characterize the positive order-continuous functions as those that preserve160

existing suprema and infima.161

Order continuity interacts well with order density. Indeed, it is possible to show using162

Theorem 11 the following lemma163
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▶ Lemma 13. If V is an Archimedian Riesz space and f, g : V → W are two linear164

order-continuous functions that agree on an order-dense subset of V , then f = g.165

This lemma will come in handy when constructing our model. Furthermore, the space166

of order-continuous linear functions on certain Riesz spaces are well-behaved subsets of the167

regular linear functions.168

▶ Theorem 14 ([1], Th 1.57). If W is Dedekind complete, then the set of order-continuous169

linear functions V → W is a band in the space of regular functions, thus forms a Dedekind-170

complete Riesz space.171

Proof. The Riesz space structure is given by Th 1.18 in [1]. ◀172

▶ Definition 15. A Riesz space is separated if for every distinct pair v1, v2 ∈ V , there exists173

an order-continuous linear functional f : V → R such that f(v1) ̸= f(v2).174

2.4 Normed Riesz spaces175

Now we will introduce normed Riesz spaces. In the context of probabilistic semantics, the176

norm plays an important role, as it can be used to distinguish between arbitrary measures177

and (sub)-probability distributions, the measures with norm at most 1.178

▶ Definition 16. Let V be a real vector space. A norm is a function ∥ · ∥ : V → R+ such179

that:180

∥v∥ = 0 iff v = 0181

∥αv∥ = |α| ∥v∥182

∥v + u∥ ≤ ∥v∥ + ∥u∥.183

For Riesz spaces, we require the norm to satisfy the additional property184

|v| ≤ |u| implies ∥v∥ ≤ ∥u∥.185

If the Riesz space is also complete with respect to the norm, we call it a Banach lattice. In186

vector space models of linear logic, the norm is typically used to distinguish between the187

product & and the coproduct ⊕, as they both have the same underlying set, but distinct188

norms. However, in the context of program semantics, the norm also has the extra role of189

allowing the interpretation of recursive programs.190

▶ Example 17. The set M(R) of signed measures over the Borel σ-algebra on R is a Riesz
space (cf. §2.6). We can equip it with the total variation norm

∥µ∥ = µ+(R) + µ−(R).

Theorem 14 shows that by assuming the right amount of structure on the Riesz space, the191

set of order-continuous linear functions between Riesz spaces also has a lattice structure. It is192

not immediately clear whether this result generalizes to the normed case. Luckily, Dedekind193

completeness is once again enough.194

▶ Example 18. Let V and W be normed Riesz spaces with W Dedekind complete. The set
of order-continuous linear functions V → W can be equipped with the regular norm

∥T∥r = sup
∥x∥V ≤1

∥|T |(x)∥W

where |T | is given by Theorem 14 and Definition 3.195

▶ Definition 19. Let V be a normed Riesz space. The closed unit ball of V is the set196

B(V ) = {v ∈ V | ∥v∥ ≤ 1}.197
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2.4.1 Banach lattices198

Banach lattices are normed Riesz spaces that are also Banach spaces. In the usual199

categorical study of Banach spaces, the relevant morphisms are the norm-continuous linear200

functions.201

▶ Definition 20. A linear function f between normed Riesz spaces V and W is said to be202

norm-continuous (or norm-bounded) if supv∈B(V ) ∥f(v)∥ is finite.203

Since we are interested in spaces with two distinct structures, a partial order and a norm,204

it is not immediately clear which class of morphisms one should care about. In general, the205

space of all norm-continuous linear functions between Banach lattices is not a Banach lattice,206

making them unable to give semantics to linear implication.207

Normed Riesz spaces are also problematic, as not every order-continuous function is norm-208

continuous, making it unclear how one would equip the space of order-continuous functions209

with a norm. However, if the codomain is a Banach lattice, then every order-continuous210

linear function is also norm-continuous [1]. This suggests that one should work with Banach211

lattices but only use order-continuous linear functions.212

▶ Definition 21. The category BanLat1 has separated Banach lattices as objects and213

order-continuous positive linear functions of norm at most one as morphisms.214

A subtlety when working with a norm and a partial order is that there are two distinct215

notions of convergence in play that on the surface appear only tenuously related. However, a216

useful property has been identified in the literature that brings some harmony between the217

two.218

▶ Definition 22. A normed Riesz space is said to satisfy the (sequential) weak Fatou property219

if every norm-bounded monotone (sequence) net has a supremum.220

In the context of program semantics, the sequential version of this property has been221

used before to interpret recursive programs [7, 12].222

▶ Lemma 23. Let f : V → V be a positive order-continuous function (not necessarily linear)223

such that f(B(V )) ⊆ B(V ). If V satisfies the weak Fatou property, then f admits a fixpoint.224

Proof. It can be directly shown that the limit of the ω-chain {fn(0)}n∈N is a fixpoint of f .225

Note that when f is linear, the theorem is trivially true, since f(0) = 0. ◀226

▶ Lemma 24 ([14] Lem 354B(d)). Every band in a Banach lattice is a Banach lattice.227

▶ Theorem 25. If V and W are Banach lattices, then the set of order-continuous linear228

functions between V and W is a Banach lattice.229

Proof. The proof is a direct consequence of Banach lattices being Dedekind complete ([14]230

Prop 354E(e)) and the space of order-continuous being a band in the space of regular linear231

functions. ◀232

2.5 Dualities233

The category BanLat1 seems to be a good candidate in which to interpret intuitionistic234

linear logic. However, since the linear negation connective (−)⊥ is usually interpreted as the235

linear dual V ⊸ R in models of linear logic based on vector spaces over R, BanLat1 would236
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not be able to model classical linear logic, since there are examples of Banach lattices that237

are not isomorphic to their bidual, e.g. finitely supported real sequences.238

A recurring challenge in models of linear logic is to make an involutive linear negation—239

typical of finite-dimensional spaces—coexist with !V , which requires infinite-dimensional240

spaces. Since we are interested in defining a model of classical linear logic, we should only241

work with Riesz spaces that are isomorphic to their bidual.242

▶ Definition 26. Let V σ denote the space of order-continuous functionals V ⊸ R. A Riesz243

space V is said to be perfect if the map σV = λxf .f(x) : V ⊸ V σσ is an isomorphism.244

We will write σ for σV when V is clear from context.245

▶ Definition 27. The category PBanLat1 has perfect Banach lattices as objects and positive246

order-continuous linear functions of norm at most one as morphisms.247

Although the definition of perfect spaces is simple, it is difficult to manipulate in practice.248

The following theorems provide some alternative characterisations, both in the normed and249

unnormed cases:250

▶ Theorem 28 ([25], v. XIII, Th. 41.4). Let V be a separated normed Riesz space. Then V is251

perfect and Banach iff V has the weak Fatou property.252

▶ Theorem 29 ([1], Th 1.71). A Riesz space V is perfect iff253

it is separated;254

whenever 0 ≤ xα↑ and supα{f(xα)} < ∞ for all positive f ∈ V σ, there exists x ∈ V such255

that 0 ≤ xα ↑ x.256

▶ Corollary 30. Bands of perfect Riesz spaces are also perfect.257

▶ Lemma 31. Every perfect Riesz space is Dedekind complete.258

Proof. The proof follows from the second condition of Theorem 29. ◀259

▶ Lemma 32. Every Riesz space of the form V σ is perfect.260

Proof. To show the first point of Theorem 29, assume that f1 ̸= f2 ∈ V σ. Then there is261

v ∈ V such that f1(v) ̸= f2(v). Using the fact that λf .f(v) is an element of V σσ, we can262

conclude that V σ is separated. For the second point, let us assume that 0 ≤ {fα}↑ and that263

for all F ∈ V σσ, if F ≥ 0, then supα F (fα) < ∞. From this hypothesis, it follows that for264

all v ∈ V , if v ≥ 0, then supα fα(v) = supα σ(x)(fα) < ∞. This means that the function265

f(x) = supα fα(x) is well-defined, linear, and order-continuous. By Lemma 1.18 in [1], V σ is266

Dedekind complete and f bounds fα. ◀267

An interesting fact that is not obvious from the definitions is that the bidual of Riesz268

spaces can be seen as a sort of completion procedure.269

It is possible to categorify the theorem above by showing that PBanLat1 is a reflective270

subcategory of BanLat1, where the reflector is given by the functor (−)σσ.271

▶ Theorem 33. The functor (−)σσ : BanLat1 → PBanLat1 is left adjoint to the forgetful272

functor U .273

Proof. We observe that if f : V ⊸ W , then σ−1 ◦ fσσ : V σσ ⊸ W . In the other direction,274

if we have a function f : V σσ ⊸ W , we can consider its restriction f ↾ V : V ⊸ W . To show275

that these operations are inverses, we use Theorem 11 and Theorem ??, which allow us to276

show that if two order-continuous functions agree on σ(V ), then they agree everywhere. ◀277
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Note that this implies that PBanLat1 is a reflective subcategory of BanLat1, which278

means that it is closed under the same (co)limits that exists in BanLat1.279

▶ Lemma 34. If V is a separated Riesz space, then the function σ : V ⊸ V σσ is injective.280

The theorem and lemma above are useful because they imply that if V is a separated281

Riesz space and W is a perfect Riesz space, then every order-continuous linear function282

f : V ⊸ W extends uniquely to a function V σσ ⊸ W .283

2.6 Signed measures as Riesz spaces284

Measures are usually defined as countably additive, nonnegative real-valued functions on285

a σ-algebra. Signed measures provide a slight generalization by dropping the requirement of286

nonnegativity.287

▶ Definition 35. Let (X, Σ) be a measurable space. A signed measure is a function µ : Σ → R288

such that µ(∅) = 0 and µ(
⋃

i∈N
Ai) =

∑
i∈N

µ(Ai) for disjoint sets (Ai)i∈N.289

An important difference between ordinary measures and signed measures is that signed290

measures come equipped with a natural vector space structure. Indeed, it can be shown that291

signed measures are perfect Riesz spaces.292

▶ Lemma 36. Let (X, Σ) be a measurable space. The space M(X, Σ) of signed measures is293

a normed Riesz space.294

Proof. The vector space structure is defined pointwise with lattice structure defined by295

µ∨ν = (µ−ν)+ +ν using the Hahn-Jordan decomposition and the norm is the total-variation296

norm. ◀297

When a measure µ is positive, its total variation norm is its total mass µ(X).298

▶ Theorem 37. Let (X, Σ) be a measurable space. The space M(X, Σ) of signed measures299

with the total variation norm is a perfect Banach lattice.300

Proof. The proof follows by applying Theorem 28, the lemma above and observing that since301

the order of measures is given pointwise, you can define their suprema pointwise as well. ◀302

3 Models of linear logic303

The categorical semantics of linear logic is very well understood; see Mellies [27] for an304

overview. In this section, we show that PBanLat1 is a model of classical linear logic.305

3.1 Symmetric Monoidal Closed Structure306

In order for PBanLat1 to interpret the multiplicative fragment of linear logic, i.e. give307

semantics to a linear λ-calculus with tensors, it must be a symmetric monoidal closed category.308

Concretely, it needs a monoidal product ⊗ such that for every object A, the functor A ⊗ −309

has a right adjoint A ⊸ −, known as linear implication.310

For models based on vector spaces, the monoidal product is typically given by the tensor311

product. For such models, linear implication has a natural interpretation in terms of linear312

functions. Furthermore, since our spaces are perfect, we have an involutive linear negation313

A⊥ defined as the space A ⊸ R, and, in models of classical linear logic, the equation314
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A ⊗ B = (A ⊸ B⊥)⊥ holds. Thus the tensor product ⊗ can be defined in terms of linear315

implication ⊸ and negation ⊥ in such models.316

Note that this circumvents one of the main complications with the model of [11], where the317

existence of a suitable monoidal product is established non-constructively using a categorical318

density argument.319

3.1.1 Internal Homs320

Since the category PBanLat1 has order-continuous linear functions with norm at most321

1 as morphisms, it makes sense to define the internal hom object V ⊸ W as the space of322

order-continuous linear functions between perfect Banach lattices V and W . This definition323

is justified by the following theorem.324

▶ Lemma 38 (c.f. Appendix B). If V and W are perfect Riesz spaces, then the set of order325

continuous linear functions V ⊸ W is a perfect Riesz space.326

From Lemma 25 and the theorem above, it follows that if V and W are perfect Banach327

lattices, then so is V ⊸ W . By using standard techniques from the literature on vector328

models of linear logic, we have329

▶ Theorem 39. The operation ⊸ : PBanLat1
op × PBanLat1 → PBanLat1 is functorial.330

3.1.2 Monoidal structure331

As mentioned above, the monoidal structure on vector space models of linear logic is332

usually defined as a tensor product, and monoidal closure is obtained from the universal333

property of tensor products. The usual recipe for defining tensor products is to use a free334

construction modulo the tensor product equations. When working with infinite-dimensional335

spaces, a completion procedure may be required as well.336

Indeed, this is the approach taken in [15], in which a tensor product is defined for perfect337

Riesz spaces via a more traditional construction using the completion of the algebraic tensor338

product. It is also shown in [15] that V ⊗W ∼= (V ⊸ W ⊥)⊥, meaning that their construction339

is isomorphic to ours.340

In contrast, our construction starts with the definition V ⊗ W ≜ (V ⊸ W σ)σ, as required341

by the laws of linear logic. We then show that it satisfies the expected universal property of342

tensor products: for every biliear function f : V × W → Y , there is a unique linear function343

f̂ : V ⊗ W → Y such that f̂ ◦ ι = f , where ι : V × W → Y is the bilinear inclusion function.344

We show this using the fact that the internal hom can be used to classify bilinear functions345

using V ⊸ (W ⊸ Y ), then showing that this space is isomorphic to V ⊗ W ⊸ Y .346

▶ Lemma 40. V ⊗ W ⊸ Y ∼= V ⊸ W ⊸ Y .347

Proof. Recall that if V and W are perfect Riesz spaces, then V ⊸ W ∼= W σ ⊸ V σ. Then348

V ⊗ W ⊸ Y = (V ⊸ W σ)σ ⊸ Y349

∼= Y σ ⊸ (V ⊸ W σ) ∼= V ⊸ Y σ ⊸ W σ
350

∼= V ⊸ W ⊸ Y. ◀351

▶ Theorem 41. V ⊗ W , defined as (V ⊸ W σ)σ, satisfies the universal property of tensor352

products.353
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Proof. Observe that the set of (norm bounded) bilinear order-continuous functions V ×W →354

Y is (isometrically, in the normed case) isomorphic to V ⊸ W ⊸ Y . We must not show355

V ⊗ W ⊸ Y ∼= V ⊸ W ⊸ Y . This is exactly Lemma 40. ◀356

Using the universal property (??) and the (easy to prove) facts that V ⊗ (W ⊗ Y ) ∼=357

(V ⊗ W ) ⊗ Y and V ⊗ W ∼= W ⊗ V , we can conclude:358

▶ Theorem 42. PBanLat1 is a symmetric monoidal closed category.359

It is difficult in general to give an intuitive characterization of the elements of a tensor360

product. This is also the case with our construction. Nevertheless, in the context of measures,361

we can give some intuition for the elements of M(A) ⊗ M(B). Let µA and µB be probability362

distributions on measurable spaces A and B, respectively. The product distribution µA ⊗ µB363

is the joint probability distribution on A×B with marginals µA and µB obtained by sampling364

µA and µB independently. This is an element of M(A)⊗M(B), but there are also other joint365

distributions in M(A) ⊗ M(B) that do not represent independent samples. For example,366

let A = B = {0, 1} and consider the joint distribution 1
2 (δ0 ⊗ δ0 + δ1 ⊗ δ1). Sampling this367

distribution returns (0, 0) or (1, 1), each with probability 1/2, so the two components are368

clearly not independent.369

In general, not every joint distribution is an element of the tensor product, as explained370

in [6]. From a programming point of view, the universal property of tensor products says371

that the behavior of a program taking inputs of type M(A) ⊗ M(B) is fully characterized372

by its behavior on inputs that are independent distributions over A and B.373

3.2 ∗-autonomous categories374

Classical linear logic differs from its intuitionistic variant by requiring that linear negation375

be involutive, that is, A⊥⊥ = A for every formula A. Categorically, this is modeled by376

∗-autonomous categories, symmetric monoidal closed categories C with a functor (−)∗ :377

Cop → C such that every object A is naturally isomorphic to A∗∗ and for every three objects378

A, B, C, there is a natural bijection Hom(A ⊗ B, C∗) ∼= Hom(A, (B ⊗ C)∗). Equivalently, a379

∗-autonomous category is a symmetric monoidal closed category C equipped with a dualizing380

object ⊥ such that for every object A, the unit ∂A : A → (A ⊸ ⊥) ⊸ ⊥ is an isomorphism.381

In our case, the dualizing object is R, the unit is the linear function σV : V → V σσ, and382

the isomorphism holds by assumption.383

▶ Theorem 43. PBanLat1 is a ∗-autonomous category.384

3.3 Cartesian and co-Cartesian structure385

Cartesian and co-Cartesian structure are useful in the formation of product and sum386

types. In models of linear logic, these are represented by linear conjunction & and disjunction387

⊕, respectively. In PBanLat1, both operations have V × W as their underlying set with388

lattice operations defined componentwise. In the normed case, we can distinguish them by389

choosing different norms.390

▶ Definition 44. Let V and W be normed Riesz spaces. We define391

the product V & W = (V × W, ∥−∥sum), where ∥(v, w)∥sum = ∥v∥ + ∥w∥.392

the coproduct V ⊕ W = (V × W, ∥−∥max), where ∥(v, w)∥max = max(∥v∥, ∥w∥).393
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Since convergence for both is defined componentwise, by using Theorem 28 we can show394

that if V and W are perfect and Banach, then V & W and V ⊕ W are as well. The unit ⊤395

for the product and 0 for the coproduct are both the trivial Riesz space {0}.396

▶ Theorem 45. PBanLat1 is (co-)Cartesian.397

4 Probabilistic coherence spaces and Banach lattices398

Probabilistic coherence spaces (PCS) [7] are a model of linear logic with a vector space399

flavor. It has been shown by Ehrhard [11] that its intuitionistic fragment can be fully and400

faithfully embedded in a category of positive cones. In this section, we show that Banach401

lattices can handle not only the intuitionistic fragment of PCS, but the classical one as well.402

We make use of the vector space construction presented in the original paper [7].403

▶ Definition 46. A Probabilistic Coherence Space (PCS) is a pair (X, P(X)), where X is a404

countable set and P(X) ⊆ X → R+ called the web such that:405

∀a ∈ X ∃εa > 0 εa · δa ∈ P(X), where δa(a′) = 1 iff a = a′ and 0 otherwise;406

∀a ∈ X ∃λa ∀x ∈ P(X) xa ≤ λa;407

P(X)⊥⊥ = P(X), where P(X)⊥ = {x ∈ X → R+ | ∀v ∈ P(X)
∑

a∈X xava ≤ 1}.408

▶ Definition 47. Let (X, P(X)) be a PCS. Its linear negation is the PCS (X, P(X)⊥).409

▶ Definition 48. Let (X, P(X)) and (Y, P(Y )) be PCSs. The PCS X ⊸ Y is the pair410

(X × Y, P(X ⊸ Y )), where P (X ⊸ Y )) = {M : X × Y → R+ | ∀v ∈ P(X) M · v ∈ P(Y )}.411

The intuition behind Definition 46 is that the web of every PCS corresponds to the412

positive unit ball of a partially-ordered vector space. This idea is used by Ehrhard and Danos413

[7] to define a functor that maps every PCS to a Banach space. It is possible to show that414

this vector space can be equipped with a Riesz space structure, where the order is defined415

pointwise.416

▶ Definition 49. Given a PCS (|X|, PX), we define BX = {u ∈ R|X| | |u| ∈ PX} and417

eX =
⋃

λ>0
λBX. The pair (eX, u 7→ sup

u′∈PX⊥
⟨|u|, u′⟩) is the normed Riesz space associated418

with the PCS (|X|, PX).419

It is shown in [7] that eX is a Banach space. Furthermore, the lattice structure can be420

defined pointwise, making eX a Banach lattice. Later in this section we will show that e can421

be made into a functor.422

4.1 PCoh and duality423

Ehrhard and Danos have shown that the partial order plays an important role in under-424

standing how to generalize PCoh [7]. In their attempt to obtain an intrinsic representation425

for probabilistic coherence spaces, the authors use exclusively the norm and cannot prove the426

equation e(X⊥) = e(X)⊥, where e(X)⊥ is the norm dual. That said, we can show that this427

functor preserves order-duality. Note that the proof uses the fact that 2X is a directed set.428

▶ Theorem 50 (c.f. Appendix C). For every probabilistic coherence space X, there is a429

natural isomorphism e(X⊥) ∼= e(X)σ.430

▶ Corollary 51. For every PCS (X, P(X)) the vector space eX is a perfect Banach lattice.431
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Since convergence for PCS is defined componentwise, it is possible to use a similar proof432

technique to show433

▶ Theorem 52. The operation e is monoidal closed and functorial.434

Proof. The functoriality of e has been proven in Section 5.1 of [7]. ◀435

Another important theorem which is direct to show is.436

▶ Theorem 53. The functor e : PCoh → PBanLat1 is full and faithful.437

5 Categories of Cones and PBanLat1438

Even though PBanLat1 is a mathematically natural model of linear logic, it relies on439

tools from functional analysis not usually familiar to computer scientists. On the other440

hand, in recent years, cones have found numerous applications in semantics of programming441

languages and logics. In this section we show that PBanLat1 is isomorphic to a category442

cones, meaning that computer scientists can translate their intuitions about cones to this443

novel setting without having to learn functional analysis.444

As it was frequently mentioned throughout this paper, every Banach lattice gives rise to a445

positive cone. Furthermore, since every PBanLat1 morphism f : V → W is positive and has446

norm at most 1, it restricts to a linear function B(V )+ → B(W )+. With this observations447

we state a few definitions from [5, 11], which assume that the cones are separated.448

▶ Definition 54. A cone C is a R+-semimodule with a norm ∥ · ∥ : C → R+.449

Every cone can be equipped with the partial order x ≤ y if and only if there is a z such450

that x + z = y, meaning that it is possible to define a partial subtraction operation whenever451

x ≤ y, calling y − x the element such that x + (y − x) = y.452

A function f : C1 → C2 between cones is linear if it commutes with addition and scalar453

multiplication, it is monotonic if it preserves the order relation, and it is Scott-continuous454

if for every directed set xα with supremum x, supα f(xα) = f(x). As is the case with455

partially-ordered vector spaces, there are different classes of cones where the order and the456

norm have particular properties:457

▶ Definition 55. A cone C is said to be:458

Sequentially complete if every norm-bounded sequence has a least upper bound.459

Directed complete if every norm-bounded directed set has a least upper bound.460

A lattice cone if the poset structure is a lattice.461

Using this notation, it seems appropriate to imagine that there should be a functor462

PBanLat1 → CLat, where CLat is the category of directed complete cone lattices. It is463

unclear, however, if there is a mapping on morphisms. Luckily, the lemma below guarantees464

that the mapping is well-defined.465

▶ Lemma 56. Let V and W be two perfect Banach lattices and f : V → W a linear,466

positive function of norm at most 1. The function f is order-continuous if and only if467

supx∈A f(x) = f(v) whenever A ⊆ V + is a non-empty upwards-directed set with supremum468

v.469

Proof. This result is a direct consequence of the weak Fatou property. ◀470
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Since the mapping on morphisms is basically the identity, the functorial laws hold, which471

allows us to conclude that there is a functor PBanLat1 → CLat.472

Next, we would like to map every positive cone to a vector space. Let C be a positive473

cone and define474

C − C = {(c1, c2) | c1, c2 ∈ C}/ ∼,475

where ∼ is the binary relation (c1, c2) ∼ (c3, c4) iff c1 + c4 = c2 + c3. Intuitively, C − C476

corresponds to the vector space of formal differences c1 −c2 of elements in C. The equivalence477

relation is used to capture the fact that, for instance, (3, 2) and (4, 3) should represent the478

same real number, since 3 − 2 = 1 = 4 − 3.479

▶ Theorem 57. Let C be a directed complete cone lattice. Then C − C is a perfect Banach480

lattice.481

Proof. The proof can be found in the Appendix D. ◀482

By linearity, Scott-continuous functions f : C → D with norm at most 1 extend to483

order-continuous functions f : (C − C) → (D − D) with norm at most 1 and we can prove484

that there is a functor CLatLin → PBanLat1. With this functor and the positive cone485

restriction functor defined, it is a direct calculation to show:486

▶ Theorem 58. The categories PBanLat1 and CLatLin are isomorphic.487

Variables x, y, z

Reals r ∈ R
MK Expressions M ::= x | r | uniform | (M1, M2) | π1 M | π2 M | let x = M in N

LL Expressions t, u ::= x | λx.t | t u | t ⊗ u | let x ⊗ y = t in u | sample ti as xi in M

Types MK τ ::= R | τ × τ

Types LL τ ::= 1 | Mτ | τ ⊸ τ | τ ⊗ τ

Linear Contexts Γ ::= x1 : τ1, . . . , xn : τn

MK Contexts Γ ::= x1 : τ1, . . . , xn : τn

Figure 1 Terms and Types of λLL
MK

6 A Probabilistic Calculus488

Though it is theoretically interesting understanding how PBanLat1 relates to existing489

models of linear logic, we are also interested in using it as a semantic basis for a language490

with probabilistic primitives. Being symmetric monoidal closed, it can give semantics to491

the linear λ-calculus. This, however, is insufficient from a programming point of view. The492

linearity restrictions are severely limiting in terms of which programs one can define in this493

language. A frequently used solution to this lack of expressivity is to use the exponential494

modality, where the coKleisli category is Cartesian closed, meaning that it can interpret the495

λ-calculus.496

However, even though we have not defined a linear logic exponential in PBanLat1, we497

can still get non-linear programming by using recent work [3] that proposes a new syntax for498

programming with linear operators and Markov kernels. The proposed two-level calculus499

allows for non-linear programs to be defined by using a lax-monoidal modality.500
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The λLL
MK metalanguage501

The semantic structure used to interpret the calculus of [3] is given by a triple (C, L, M),502

where C is roughly a category of Markov kernels1, L is a symmetric monoidal closed category503

and M : C → L is a lax monoidal functor.504

This two-level structure manisfests itself at the syntactic level by having a two-level syntax:505

the first level is used to program kernels while the second one serves as a kind of metalanguage506

that has access to higher-order functions, both of which are depicted in Figure 1, The linear507

language has linear function types, which allows for higher-order programming and, unlike508

most languages based on linear logic, it has a modality M, which corresponds to the types509

that may be sampled from. The variables bound by the linear context are, roughly speaking,510

computations. In the language for kernels there are no linearity restrictions and, therefore,511

variables, i.e. samples from distributions, can be freely duplicated and discarded. Under this512

perspective, the variables in MK programs should be thought of as values. The intuition513

behind this language is that linearity forbids distributions to be sampled more than once,514

but once you have the sample in hands, it can be used as many times as you want.515

Each layer has its own typing judgement relations ⊢LL and ⊢MK , which we go over in516

more detail in Appendix A. We highlight one of the most interesting rules; it is the rule that517

allows programs to be transported between layers:518

Sample
x1 : τ1 · · · xn : τn ⊢MK M : τ ∆; Γi ⊢LL ti : Mτi 0 < i ≤ n

∆; Γ1, · · · , Γn ⊢LL sample ti as xi in M : Mτ
519

Operationally, it samples from n LL programs {ti}i, each sample is bound to the corresponding520

variable in {xi}i and finally the continuation M is executed.521

We want to model λLL
MK with PBanLat1. For that we still need a CD category and a522

lax monoidal functor. For the CD category we will use the category of measurable spaces523

and sub-Markov kernels.524

▶ Definition 59. The category sStoch has measurable spaces as objects and sub-Markov525

kernels as morphisms, i.e. measurable functions between a measurable space and the space of526

subprobability distributions over a measurable space.527

sStoch is a CD category, which means that it is symmetric monoidal, with the monoidal528

product being the product measurable space.529

▶ Theorem 60 (c.f. Appendix E). There is a lax monoidal functor M : sStoch →530

PBanLat1.531

This means that the triple (sStoch, PBanLat1, M) is a λLL
MK model.532

7 Related work533

There have been a number of semantics of linear logic based on vector space-like objects.534

Two important families of such semantics are the ones based on probabilistic coherence spaces535

and the ones based on Banach spaces. As we will explain below, we see our model as a nice536

synthesis of these two approaches.537

1 a CD category, to be more precise
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Positive Cone Semantics of Linear Logic538

To overcome the limitation that PCoh cannot represent continuous distributions, Ehrhard539

et al. define a cartesian closed category CStabm [12], which uses normed R+-semimodule—540

which are in correspondence with positive cones of partially ordered vector spaces—to541

interpret a probabilistic variant of PCF with continuous distributions. In a follow-up paper,542

Ehrhard [11] has defined a category CLinm of sequentially complete positive cones with543

measurability paths and linear Scott continuous maps in which PCoh embeds fully and544

faithfully.545

A similar approach was taken in [32], which defined a category CCones of so-called546

coherent cones and linear contractive functions and showed that it is a model of classical547

linear logic. These cones come equipped with a different notion of completeness that is548

stronger than sequential completeness but weaker than ours.549

From a mathematical point of view, the objects of both CCones and CStabm are not550

as well understood as Banach lattices, making them not ideal semantic frameworks to reason551

about probabilistic programs. Besides, our model provides a clear mathematical justification552

for having Fatou-like properties in the semantics: it is forced upon it by Theorem 28 instead of553

being there for denotational reasons, as is the case of CStabm, or in enabling the exponential554

construction, as is the case of CCones, showing a kind of canonicity of our model.555

Vector Space Semantics of Linear Logic556

Dahlqvist and Kozen [6] have defined a category of partially ordered Banach spaces557

RoBan, shown that it is a model of intuitionistic linear logic, and used it to interpret a558

higher-order imperative probabilistic language with while loops and soft-conditioning.559

Their model also uses a mathematically well-understood class of vector spaces. That560

being said, by using a more general class of vector spaces than we do, their model has less561

structure than ours. A practical consequence of this lack of structure is that in order to562

guarantee the soundness of their semantics, they define 6 type grammars that are used for563

different program constructs. As an example, in order to interpret conditionals and while564

loops the context may only have Dedekind complete types.565

Another relevant vector space model is the one based on complex coherent Banach spaces566

[18]. However, since they are complex vector spaces, it is unclear if it would be possible to567

embed PCoh into them.568

Neither RoBan nor CStabm are models of classical linear logic.569

8 Conclusion570

In this paper we have shown that PBanLat1 is a model of classical linear logic that571

conservatively extends PCoh and can be used to give semantics to a recursive probabilistic572

calculus. Our model differs from existing extensions of PCoh that only extends PCoh’s573

intuitionistic fragment, meaning that they do not have an involutive negation. We believe574

that our model is a good fit for formal verification purposes because Riesz spaces have decades575

of research and have been extensively used in the formalization of stochastic processes.576

For future work, we are interested in showing that PBanLat1 can accommodate expo-577

nentials and use this category for reasoning about correctness properties of probabilistic578

programs such as inference algorithms.579
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A A Metalanguage for Linear Operators and Markov Kernels660

In this section we further explain the two-level language λLL
MK and its semantics. The661

language MK corresponds to an effectful language with probabilistic primitives and where662

free variables are assumed to be values, as opposed to computations. For instance, the663

program x : N, y : N ⊢MK x + y : N is interpreted as a deterministic program. This language664

is interpreted in a CD category, which can be seen as an abstraction for programming with665

commutative effects [16].666

▶ Definition 61. CD categories are symmetric monoidal categories such that every object A667

has a commutative comonoid structure copyA : A → A ⊗ A and deleteA : A → 1 satisfying668

certain structural properties.669

In the context of probabilistic programming, there are many CD categories to choose670

from. In particular, for any subprobability monad, its Kleisli category is a CD category.671

This is the case for the sStoch category, since it can be characterized as the category of672

measurable sets and measurable functions A → G(B), where G is the subprobability monad673

over Meas.674

The language LL is basically a linear λ-calculus. By itself, linearity limits the expressivity675

of the language quite a bit. In the original paper, the author argues that for probabilistic676

programming, the linear usage of variables is, semantically, too restrictive, since many677

probabilistic which are linear, in the semantic sense, may use variables for than once [3].678

This observation led to the introduction of the M modality in the LL language which allows679

MK programs to be called from an LL program. Semantically, this is interpreted as a lax680

monoidal functor.681

▶ Definition 62. Let C and D be monoidal categories. A (lax) monoidal functor is a functor682

F : C → D equipped with a natural transformation εA,B : FA ⊗D FB → F (A ⊗C B) and a683

morphism ID → F (IC) making certain coherence diagrams commute.684

From a programming point of view, types Mτ should be thought of as types from which685

one can sample from. Supposing that the language has a primitive uniform for the uniform686

distribution over the unit interval the Sample construct can be used to write the program687

sample uniform as x in (x + x)688

The program above samples from a uniform distribution and adds the result to itself. This689

program illustrates why this syntax increases the expressivity of the linear λ-calculus. By690

allowing the continuation x + x to be an MK program, variables may be freely reused or691

discards without worrying about syntactic restriction imposed by linearity.692

However, once inside the MK language, there is no way of going back to the higher-order693

language, meaning that the program sample uniform as x in (sample uniform as y in (x + y)) is694

not well-typed. This is mitigated by lax monoidality, which makes it possible to simultaneously695

sample from distributions: sample (uniform, uniform) as (x, y) in (x + y).696

▶ Definition 63. A model of λLL
MK is a triple (C, L, M), where C, a symmetric monoidal697

closed category L and M : M → C is a lax monoidal functor.698

The typing rules are depicted in Figure 2. They are basically the amalgamation of the699

rules for programming with CD categories, i.e. a first-order expression language with pairs,700

with symmetric monoidal closed categories, i.e. the linear λ-calculus with tensor types. The701



Anonymized XX:19

Var

Γ, x : τ ⊢MK x : τ

Const
r ∈ R

Γ ⊢MK r : R

Uniform

Γ ⊢MK uniform : R

Let
Γ ⊢MK t : τ1 Γ, x : τ1 ⊢MK u : τ

Γ ⊢MK let x = t in u : τ

Pair
Γ ⊢MK t : τ1 Γ ⊢MK u : τ2

Γ ⊢MK (t, u) : τ1 × τ2

Proj1
Γ ⊢MK t : τ1 × τ2

Γ ⊢MK π1t : τ1

Proj2
Γ ⊢MK t : τ1 × τ2

Γ ⊢MK π2t : τ2

Axiom

x : τ ⊢LL x : τ

Unit

· ⊢LL unit : 1

Abstraction
Γ, x : τ1 ⊢LL t : τ2

Γ ⊢LL λx.t : τ1 ⊸ τ2

Application
Γ1 ⊢LL t : τ1 ⊸ τ2 Γ2 ⊢LL u : τ1

Γ1, Γ2 ⊢LL t u : τ2

Tensor
Γ1 ⊢LL t : τ1 Γ2 ⊢LL u : τ2

Γ1, Γ2 ⊢LL t ⊗ u : τ1 ⊗ τ2

LetTensor
Γ1 ⊢LL t : τ1 ⊗ τ2 Γ2, x : τ1, y : τ2 ⊢LL u : τ

Γ1, Γ2 ⊢LL let x ⊗ y = t in u : τ

Sample
x1 : τ1 · · · xn : τn ⊢MK M : τ ∆; Γi ⊢LL ti : Mτi 0 ≤ i < n

∆; Γ1, · · · , Γn ⊢LL sample ti as xi in M : Mτ

Figure 2 Typing rules for λLL
MK
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Var

τ × Γ idτ ×delΓ−−−−−−→ τ

Let
Γ M−→ τ1 Γ × τ1

N−→ τ2

Γ copy;(id×M);N−−−−−−−−−−→ τ2

× Intro
Γ M−→ τ1 Γ N−→ τ2

Γ copy;M×N−−−−−−−→ τ1 × τ2

× Elimi

Γ M−→ τ1 × τ2

Γ
M ;(idτi

×del)
−−−−−−−−→ τi

Var

τ
idτ−−→ τ

Abstraction
Γ ⊗ τ1

t−→ τ2

Γ cur(t)−−−→ τ1 ⊸ τ2

Application
Γ1

t−→ τ1 ⊸ τ2 Γ2
u−→ τ1

Γ1 ⊗ Γ2
(t⊗u);ev−−−−−→ τ2

⊗ Intro
Γ1

t−→ τ1 Γ2
u−→ τ2

Γ1 ⊗ Γ2
t⊗u−−→ τ1 ⊗ τ2

⊗ Elim
Γ1

t−→ τ1 ⊗ τ2 Γ2 ⊗ τ1 ⊗ τ2
u−→ τ

Γ1 ⊗ Γ2
(id⊗t);u−−−−−→ τ

Sample
τ1 × · · · × τn

M−→ τ Γi
ti−→ Mτi

Γ1 ⊗ · · · ⊗ Γn
t1⊗···⊗tn−−−−−−→ Mτ1 ⊗ · · · ⊗ Mτn

µ−→ M(τ1 × · · · × τn) MM−−−→ Mτ

Figure 3 Categorical Semantics of λLL
MK

main novelty is the introduction of the lax monoidal modality M and its accompanying702

typing rule Sample which connects the MK and LL languages.703

Much like the typing rules, the categorical semantics of λLL
MK is the combination of the704

categorical semantics of the internal languages of CD categories and the linear λ-calculus705

with the exception of the Sample rule that makes use of the functor M. The full semantics706

is depicted in Figure 3.707

B Proof of Lemma 38708

By Theorem 14, V ⊸ W is a Riesz space. Applying Theorem 29, we can also show that709

it is perfect. To show separability, let f1, f2 : V ⊸ W be distinct functions. Then there is a710

point v ∈ V such that f1(v) ̸= f2(v). Since W is perfect, it is separated, therefore there exists711

g : W ⊸ R such that g(f1(v)) ̸= g(f2(v)). Then the order-continuous function λf .g(f(v))712

separates the points f1 and f2, therefore V ⊸ W is separated.713

Now let 0 ≤ {fα}↑ be an increasing net such that supα F (fα) < ∞ for all positive714

F : (V ⊸ W ) ⊸ R. We can define an f such that fα ↑ f pointwise. Let v ∈ V + and let715

F : W ⊸ R be a positive functional. Consider the functional λf .F (f(v)) : (V ⊸ W ) ⊸ R.716

By hypothesis, supα(F (fα(v))) < ∞, and since W is perfect and {fα(v)} is a positive net in717

W , there exists f(v) ∈ W such that fα(v) ↑ f(v). This defines f on elements of V +, and for718

arbitrary v ∈ V we take f(v) = f(v+) − f(v−). Then supα fα = f .719
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C Proof of Theorem 50720

If u ∈ e(X⊥), consider the element fu = λx.⟨u+, x⟩ − ⟨u−, x⟩. It is possible to show that721

the function λx.⟨u, x⟩ is positive and Scott-continuous, therefore order-continuous for every722

u ∈ P(X). Using this result, it is not hard to show that fu ∈ e(X)σ.723

Conversely, consider an element f ∈ e(X)σ. Without loss of generality, we can assume724

that f is positive. We want to associate to f an element in e(X⊥). As is shown by [7], we725

can alternatively characterize the space e(X) as726

{u ∈ R|X| | ∃λ > 0 ∀u′ ∈ P(X⊥) ⟨|u|, u′⟩ ≤ λ}.727

Consider the function fδ = λx.f(δx). Let us show that fδ ∈ e(X⊥). To do this, we show728

that for every u ∈ P(X), ⟨|f ′|, u⟩ is uniformly bounded. Let (uα)α∈Pfin(X) be the ascending729

net uα,a = ua if a ∈ α and 0 otherwise. By expanding the definition, we get the equality730

⟨|fδ|, uα⟩ =
∑

a∈|X|

|f(δa)|uα,a =731

∑
a∈|X|

|f(δauα,a)| =
∑

a∈|X|

f(δauα,a).732

We get the last equality from f being a positive function. Since every uα has finite support,
the expression above is well defined.

∑
a∈|X|

f(δauα,a) = f

 ∑
a∈|X|

δauα,a

 = f(uα)

Since f is order-continuous and monotone and {uα} is an increasing net, we can conclude733

that ⟨|fδ|, u⟩ ≤ f(u), therefore for every u ∈ P(X), ⟨|fδ|, u⟩ ≤ ∥f∥ and fδ ∈ e(X⊥). If f is734

not positive, we decompose it as the difference of two positive maps f = f+ − f− and define735

fδ = f+
δ − f−

δ .736

A direct calculation shows that this is indeed an isomorphism.737

D Proof of Theorem 57738

Let C be a directed complete lattice cone. In order to define functions over it we use739

the universal property of quotients: it suffices to define it over every pair (c1, c2) while740

guaranteeing that the function acts the same over every equivalence class.741

For instance, the vector space structure can be simply defined componentwise. Let742

(c1, c2), (c3, c4) ∈ C − C then we define743

(c1, c2) + (c3, c4) = (c1 + c3, c2 + c4)744

α(c1, c2) = (αc1, αc2) for α ≥ 0745

α(c1, c2) = (−αc2, −αc1) otherwise746

The lattice operations require a bit more ingenuity, and we first observe the equation747

u ∨ v = u + (v − u)+ which holds in every Riesz space, reducing the lowest upper bound748

operation to addition and the positive part. By doing some algebraic manipulations we get that749

if (c1, c2), (c3, c4) ∈ C − C then we define (c1, c2) ∨ (c3, c4) = (c1, c2) − ((c3, c4) − (c1, c2))+ =750

(c1, c2) + (c3 + c2 − (c1 + c4) ∧ (c2 + c3), 0) = (c1 + c3 + c2 − (c1 + c4) ∧ (c2 + c3), c2). The751

lattice equations such as commutativity and idempotency follow by unfolding the definitions752

and from C being a lattice.753

Before defining a norm over C − C we first need the following lemma754
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▶ Lemma 64. (C − C)+ ∼= {(c, 0) | c ∈ C} ∼= C.755

Proof. The mapping {(c, 0) | c ∈ C} → (C − C)+ is the injection through the equivalence756

class function and the mapping in the other direction can be constructed by observing that757

whenever (c1, c2) ≥ (0, 0) it can be shown that c1 ≥ c2 and, therefore, (c1 − c2, 0) = (c1, c2)758

and this decomposition is unique, since (c, 0) = (d, 0) implies, by definition of ∼ that c = d.759

The second isomorphism is trivial. ◀760

Given a norm over C it is possible to extend it to a norm over C − C. This follows761

from the property of normed Riesz spaces, where ∥|v|∥ = ∥v∥ which forces us to define762

∥(c1, c2)∥ = ∥|(c1, c2)|∥C . Note that since |(c1, c2)| is a positive element of C − C, by the763

lemma above it can be mapped back to an element of C which, in turn, has a norm.764

Therefore, we have shown that C − C is a normed Riesz space. Since C has the directed765

completeness property it follows that C − C has the weak Fatou property and, therefore, it766

is Banach and perfect.767

E Proof of Theorem 60768

There is a standard functor M that maps measurable sets to the vector space of signed769

measures and sub-Markov kernels f : A → MB to the linear function Mf(µ) =
∫

fdµ. The770

proof of linearity is standard, but order-continuity requires a few words. Let {µα} ↓ 0 be a771

descending arrow, Mf(µα) =
∫

fdµα ≤
∫

1dµα = µα(A) which, as µα goes to zero, so does772

µα(A), making f̃ order-continuous. The functorial laws also follows from standard proofs773

from the literature.774

To show that M is lax monoidal, we need to define a natural transformation µX,Y :775

M(X) ⊗ M(Y ) → M(X × Y ) which is easily defined by the universal property of the tensor776

product and a morphism ε : R ⊸ M(1) which maps a real number r to the measure rδ{∗},777

where ∗ is the only member of the singleton set 1. Showing that the necessary diagrams778

commute follows from the universal property of the tensor product.779
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